

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Source Term The Coolant and Plant Radiation Fields Version 2

Paul FrattiniKeith FruzzettiDavid PerkinsSusan GarciaTechnical ExecutiveTechnical ExecutiveProgram ManagerSenior Technical Leader

Joel McElrath Senior Technical Leader Phung Tran Senior Technical Leader

Rick Reid Senior Technical Leader **Dan Wells**

Senior Technical Leader

ISOE Bern, Switzerland April 2014

Source Term With some many options, what is in the decision...

Source Term Are we all talking the same...

- How can source term be defined:
 - Simply Defined as: Activated nuclide(s) that may be transported throughout the system and available for deposition on ex-core surfaces generating radiation fields.
- But does everyone have the same in the industry...
 - Chemistry any metal released during corrosion
 - Nuclear Engineering amount of material deposited on fuel
 - Radiation Management Three generic categories
 - Refuel pool activity and dose rate to refueling operators
 - Peak dose rates associated with release post-peroxide addition
 - Any dose received by workers from piping

Overview of Factors Impacting Worker Dose Indirect Driver for Radiation Field Reductions

Radiation Field Generation

Two Phases: Coolant Activity and Deposition

- 1. During operation activity incorporation into surface oxides appears governed by soluble species
- 2. Particulate dropout in dead legs or low fluid shear regions will increase local dose rates

During Shutdown – Particulate

Corrosion, Release and Uptake Metals and Activated Corrosion Products

- Metallic non-radioactive corrosion and wear products:
 - Soluble, colloidal or particulate species
- Deposition on the fuel rod surfaces by precipitation, adsorption, or particle deposition
- Activated by absorbing fast or thermal neutrons in the reactor core
- Release:
 - Erosion, thermal, hydraulic, chemical, redox potential or solubility changes
- Uptake into oxide radiation field build-up

Corrosion Product Transport The challenge for cleanup systems

- Generic example
 - Alloy 600TT tubing, medium to high duty core with a standard letdown system
 - ~20 to 35 kilograms of metals transported to the fuel
 - Letdown removal (normal range assuming 100% removal)
 - 500 to 2000 grams removed
 - What is the 690 effect
- Corrosion product challenges:
 - Activation, fuel performance (thermal and CIPS), end-ofcycle releases, etc
 - Colloid, Soluble or insoluble...
 - What are these?

In-Core Deposition and Activation

- Fuel deposit formation in tied directly to sub-cooled nucleate boiling
 - Impact of core materials of construction
 - Residence times can be evaluated using specific activity
 - Shifts in radial and axial distribution of boiling can cause deposit redistribution

What are the optimum properties of fuel deposits for reducing radiation fields and can they be targeted?

Co-58 Surface Activity Calculations

Time to Surface Activity Equilibrium (1025307)

- Co-58 rapidly reaches equilibrium while Co-60 takes many cycles to reach equilibrium
- Both Co-58 and Co-60 coolant concentrations must be considered when attempting to correlate surface activities/shutdown dose rates to operating chemistry.

Impact of PWR Coolant Radiocobalt Concentrations on Shutdown Dose Rates: Interim Report. EPRI, Palo Alto, CA: 2012. 1025307.

Activity Buildup During Shutdown Low Flow Areas

- Insoluble deposition in dead legs and regions of low fluid shear <u>during shutdown</u> transients lead to increased dose rates
- At one plant dose rates in decay heat (RHR/ND) correlate reasonably with maximum particulate concentrations, but more data will be necessary to extend correlation to other plants*

*Impact of PWR Operational Events on Particulate Transport and Radiation Fields. EPRI, Palo Alto, CA: 2012. 1025305.

Key Gaps Related to Primary Side Deposits Radiation Field Source

Standard Radiation Monitoring Programs BRAC and SRMP – How to track

Dose rates representative of activity incorporation into piping oxide films during operating cycle.

<u>BWR Radiation Level</u> Assessment and <u>C</u>ontrol

- 1977 current
- Long running data collection program
- 2013 Report (3002000565)

PWR – <u>Standard Radiation</u> <u>Monitoring Program</u>

- 1978 to 1996, 2005 current
- 2013 Report (3002000529)

Source Term – A Process Ongoing EPRI Work and moving forward...

✓ 2014 Fundamental Activity: SRMP/BRAC Project

ELECTRIC POWER

Letdown Optimization

Mass Removed and Resin Efficiencies – Refueling Operations

- Refueling operations:
 - Letdown Systems
 - Flow: 45 to 250 gpm
 - Resin: Usage of CVCS, BTRS and other
 - Efficiency improvements
- Impacts on performance:
 - Activity release
 - Soluble, insoluble or colloid impact
 - Cleanup flow and volume
 - Resin efficiency

Optimized shutdown processes with optimized letdown performance = minimal impact on outage.

PWR Zinc Injection Why Zinc or Where does Zinc Injection fit?

- Challenge: Zinc impacts multiple programs
- Impacts to Consider:
 - Fuel performance
 - Short-term to longterm
 - Materials
 - Chemistry program changes
 - Long-term dose rates

Effect of Zinc on Out-of-Core Dose Rates

Channel Head Dose Rates

Piping Dose Rates

Long-term, dose rates expected to be reduced by a factor of three or more relative to pre-zinc levels

Shutdown Releases

Failure to cleanup activity post-peroxide prior to cavity fill resulted in high dose rates on refueling bridge

Alternate Shutdown Strategies

- Alternate shutdown:
 - Soft shutdown, controlled cool down and reactor coolant pump operating strategies.
 - Allowed by the Primary Water Guideline
 - Must be coordinated between Operations, Chemistry, Fuels, Radiation Management, and Outage

Operating Experience

- Increasing trend related to the number of plants securing reactor coolant pumps
 - Lower peaks observed
- 4 plants have increased the RCP run time post-peroxide
 - 2 units have experienced Increased peaks observed

Post-SGR Co-58 Shutdown Peaks: RM TSG Technical Update

✓Observations

- The expected postreplacement trends were evident considering materials corrosion
- In general terms, peak activities lower after the first 8 SG EFPYs
- How does this impact dose rates, fuels, and chemistry?
- Does this capture the whole story?
 - ✓ RCP operating strategies, etc

Steam Generator Effective Full Power Years

Conclusions

- Address the gaps...
 - Surface chemistry interactions and radiation field buildup considerations
 - Impact of optimized fuel, materials, chemistry and how to factor these impacts into future planning
- Benchmarking:
 - One size shoe does not fit all
 - Get the rest of the story...
- Can we model?
 - Example PWR that is a mature plant with steam generator replacement
 - Zinc injection, aggressive or alternate shutdown chemistry regimen, pH control, does the plant apply ultrasonic fuel cleaning
 - Decontamination of the outer oxide
 - Industry data from Decommissioning Program 95% reduction in Dose Rates
- Source Term: Site effort and not a RP and Chemistry ONLY EFFORT!

Together...Shaping the Future of Electricity