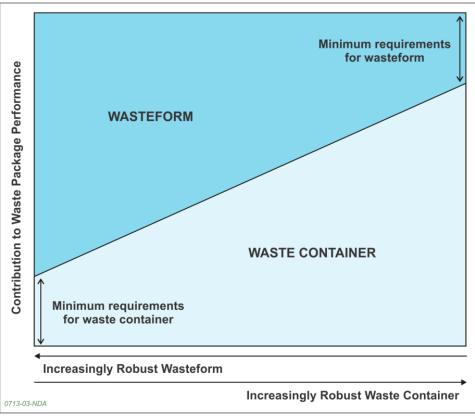
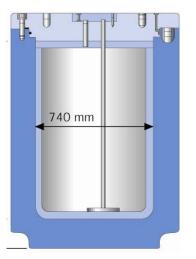
Conditioning of intermediate level waste resin by dewatering

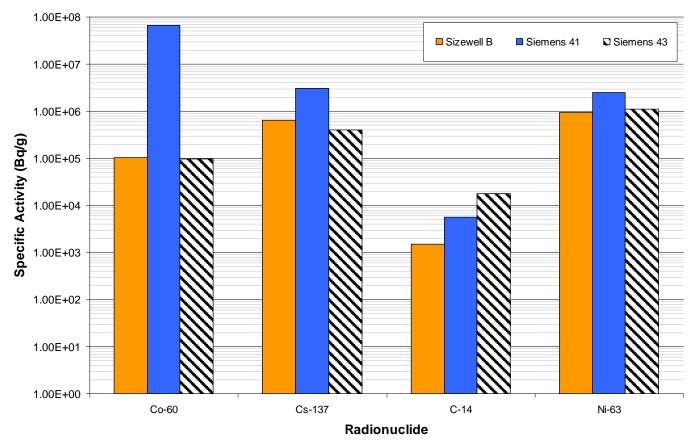
ISOE European Symposium 2014 - Bern, Switzerland

Intermediate Level Waste at Sizewell B


- Definition of ILW for the UK
 - >12 GBq/te (β/γ) or >4 GBq/te (α)
 - No significant decay heat output
- Inadequate storage capacity for ion-exchange resins
 - Design assumption (in 1983) that Geological Disposal Facility would be operational by 2000
- No provision made to condition solid ILW from routine maintenance & inspection tasks (e.g. SG ECT)


High Integrity Containers – A novel idea for the UK

"Traditional" UK ILW packages


"Novel"
UK ILW packages

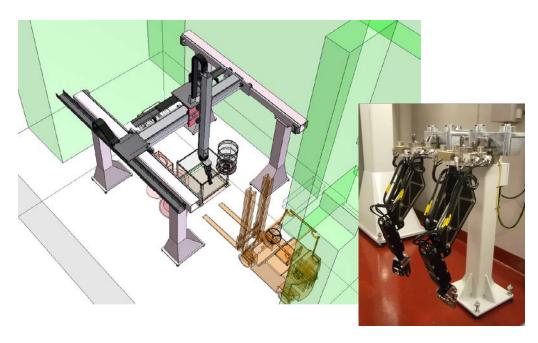
- •Extensive dialogue with regulators and stakeholders over 4 years
- •Weekly telephone conferences, monthly meetings "No surprises"

Comparison of ILW resin source terms

- FAFNIR, NEWA & MOSAIK are designed to condition resins from S41plants
- Sizewell B source term is very similar source term to Konvoi (S43) NPPs

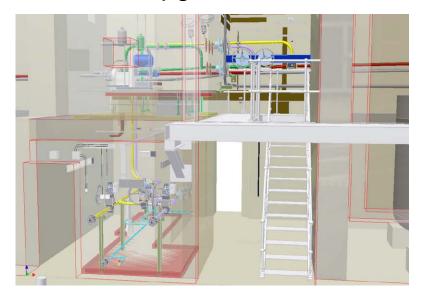
Enabling Works - Clearance of existing waste store

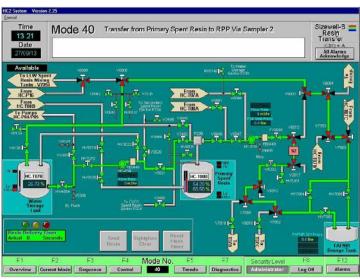
- High doserate compactable waste
 - Accumulated for 18 years
 - 500 bags in 40 x 1m³ cages & IBC's
 - -2-50 mSv/h in contact
 - General area ~300μSv/h.



Enabling Works - Clearance of existing waste store

- Benchmarking at Ringhals identified robotic manipulator for ILW processing
- 3-axis gantry+ manipulator arms
 - Intermeshing jaws & parallel acting jaws


Enabling Works - Clearance of existing waste store


- Sentencing based upon external doserate
 - Bags were not opened
 - L/ILW doserate limit reduced to 1mSv/h i/c
 - Manipulator VRF <2, cf. Shredder-compactor VRF
 ~5
- 45 x LLW drums: 0.75 mSv/h i/c (0.002 3 mSv/h)
- 22 x ILW drums: 6.1 mSv/h i/c (0.18 25 mSv/h)
- Collective Dose: 1.9 man.mSv over 14 days.

Enabling works – Resin Transfer System upgrade

- New docking station for resin dewatering machine
- SCADA upgrade for new resin transfer modes

- Extended duration of design & construction phase +15 months
- Collective Dose: 12 man.mSv (228 people from Jan 2010 to Jan 2014)
- Max. individual dose: 1.5 mSv

Enabling works – Resin Transfer System upgrade


- Existing water tank contaminated with ILW resins and crud – no filters had been installed
- New pneumatic actuators & local control panel for existing valves next to motive water storage tank

Enabling works – Resin Transfer System upgrade

 Shielding plan developed to create low doserate area for installation of new actuators

 $80 - 100 \mu Sv/h$

Contamination control issues during construction

Gap under foot = contamination trap

- Poor house-keeping during construction no cleaning plan
 - Dirt & cement dust made contamination monitoring very difficult
- Contamination traps identified during plant commissioning
 - Electrical cables not enclosed in conduit
 - Gaps under x-y-z gantry manipulator legs not sealed
 - Damaged floor surfaces not automatically repaired

Plant commissioning & hand-over

- Physical tests of plant performance
- Task Observations carried out of workers using the procedures
- Surveys performed along resin transfer route
 - Verify permanent shielding installation – OK where fitted...
 - ...Some shielding features agreed in the detailed design could not be constructed in practice
 - Two water-filled temporary shield blocks found to be empty!

Lessons learned – plant design & modifications

- Design phases not aligned with safety case development stages.
- Designers & Project Managers not experienced in good radiological design
 - ALARA design standards and good practices NOT well known
 - Need to incorporate ALARA Design Guidelines (e.g. IAEA NS-G-1.13) into company's design & modification process
- Easily decontaminable surfaces
 - "Nuclear-grade" has little meaning to designers
 - "Food or pharmaceutical grade" products are readily available and familiar to designers & installers
- Lack of Radiological Protection hold-points in design & construction process
 - How is advice communicated & action/inaction tracked?
 - How are shortfalls identified, tracked and resolved?
 - Include RP issues in Operations Hand-Over Certificate process?

Dewatering resins into High Integrity Containers

- MOSAIK II-15
 - IP-2 ductile cast iron cask (no lead liners fitted)
- FAFNIR V & NEWA
 - Resin dosing & MOSAIK dewatering equipment

Management of high radiation areas

NOT PROTECTIVELY MARKED

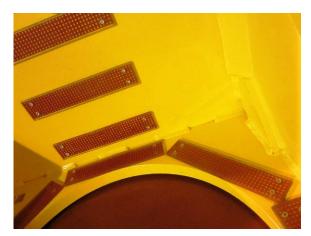
TRANSFER RESIN FROM 1HC-T08A TO 1HC-T08B (MODE 6) AND POST TRANSFER FLUSH

Appendix 1

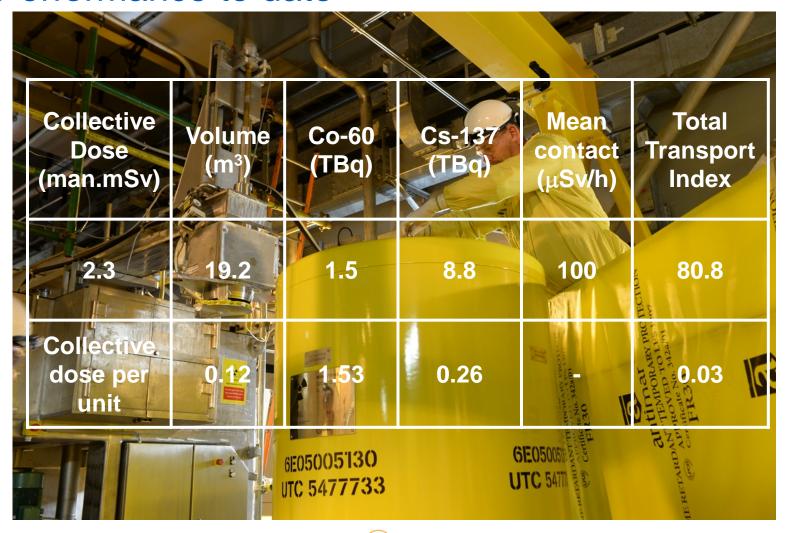
PRE-SLUICE ACTIONS All Pre-Sample Actions are performed by Operations

BLR	No. of Doors & Levels	Pre-Sluice Actions	Comments	Ops Sign	Peer Check Sign
7158	One door at +2.7m level				
7167	One door at +2.7m level				
71G6	One door at +2.7m level				
71G8	One door at +2.7m level		Restricts access & egress from 71H4		
71G3	One door at +2.7m level				
71G4	One door at +2.7m level	Search for, and remove, all persons from each room	Restricts access & egress from 7147 & 7157		
71G5	One door at +2.7m level	from each room.			
71F8	Two doors; one at +2.7m level (from 71F7), one at 6.5m level (from 7224)	Lock door(s). Post "R4" & "No			
7240	One gate; at eastern end of room	Entry – Resin Transfer" signs.	Post R3 sign only, on gate		
71F4	One door; at +6.5m level	Contact HP to update CALog.	Restricts access and egress to 71F3 (+2.7m level)		
71F5	One door at +2.7m level (from 71F4)				
7136	Two doors at -0.1m level; one from 7146; one from 7154				
7165	One door BLR 7165/7166				
71F9	Corridor Two doors leading into corridor at +2.7m level: one from 71H2 & one from 71F7.	Post "R3" signs. Contact HP to update CALog.	To be classified R3 due to high dose rates experienced in corridor whilst moving ILRW resins		

NOT PROTECTIVELY MARKED


Page 19 of 21

MOSAIK handling


- Lessons from bench-marking visits to Biblis & Grohnde
 - Plastic strakes fitted to Cask Lifter to protect MOSAIK paint
 - MOSAIK movement plan developed

Seal Change			MODIFIED CLOSURE			Receipt QC Reqd		
	* Log Bo	ok Hold						
MOSAIK INFORMATION			LOCATION			FINAL STORAGE		
Batch No	UTC No	Delivery	Empty	Settling	Complete	х	γ	Z
	5477720	On-site				3	1	2
01	5477685	On-site				3	1	1
01	5477721	On-site				4	1	2
	5477688	On-site				4	1	1
	5477725	On-site				2	2	1
02	5477696	On-site				2	1	2
1 x Sample	5477729	On-site		I		2	1	1
	5477684	On-site			71A5	Y09		
	5477706	On-site				3	2	1
03	5477700	On-site				4	2	2
03	5477704	On-site				4	2	1
	5477715	On-site				3	2	2
	5477728	On-site			Y09	Guarantee Measuremen required		
04	5477724	On-site		17/03/14	Y09			
04	5477710	On-site		on NEWA	Y09			
	5477734	On-site			Y09			
	5477719	On-site	6U	Y05	Y09			
05	5477722	On-site	6L	Y05	Final			
05	5477717	On-site	3U	Y05	Final			
	5477723	On-site	3L	Y05	Final			
	5477686	On-site	1L	Y06	Final			
06	5477692	On-site	2L	Y06	Final			
1 x Sample	5477701	On-site	8U	Y06	Final			
	5477695	On-site	39	Y06	71A5	Y09		
	5477691	06-Mar-14	8L	Y07	Final			
07	5477693	06-Mar-14	5U	Y07	Final			
0,	5477733	06-Mar-14	5L	Y07	Final			
	5477687	06-Mar-14	2U	Y07	Final			
	5477708	On-site	2L	Y08	Final			
08	5477703	11-Mar-14		Y08	Final			
U8	5477707	11-Mar-14	7L	Y08	Final			
	5477714	11-Mar-14		Y08	Final			

Performance to date

Lessons learned – Resin dewatering

- Cask operating instructions are mandatory
 - Better accuracy from the Design Authority is required
 - Do you really mean "100% of surface free from any defects"?
 - Better clarity is required
 - 4 tiers of documents must be read together, to understand requirements
- 20 years of ILW resin
 - 55 MOSAIK casks packaged for disposal in 10 weeks
 - Predicted Collective Dose = 4 man.mSv
- Why do we allow liquid radwaste demineralisers to operate as LLW?
- Why do we continue to cement-encapsulate LLW resins?
- Should we operate all demineralisers to become ILW?

