Assessment of the alpha risk after a fissile material dissemination in a PWR using the OSCAR v1.4 code

2019 ISOE International Symposium – Beijing, China, 22-24 October 2019

Thomas JOBERT, Antoine DRUET (FCR RP) – thomas.jobert@edf.fr

EDF/DIPNN/DT

This document contains proprietary information and shall neither be reproduced nor copied in whole or in part nor shall it be furnished to third parties without the prior written permission of EDF SA. © 2019 EDF
• Alpha risk comes from the fissile material dissemination into the primary coolant and the contamination of circuit surfaces where maintenance operations are conducted during outage.

Fissile material disseminates in particulate form and is mainly insoluble in the primary circuit.

Fuel oxide particles are mainly deposited on the primary surfaces.

Then, they undergo erosion and deposition, which induce transfer between in-core surfaces and out-of-core surfaces.
At EDF, the alpha risk management is based on three main steps (graded approach):

- **1st step**: Primary coolant activity monitoring

ALPHA POTENTIAL RISK if:

- $^{131}I > A + 1000 \text{ MBq/t} \quad (1300 \text{ MWe series}), \quad A + 2000 \text{ MBq/t} \quad (N4 \text{ and } 900 \text{ MWe series})$ (= fissile material dissemination risk), or

- $\alpha.G > 1 \text{ Bq/l}$, or

- The previous outage was at alpha risk

\[A = A_0(1 + k \cdot BU) \]

Remaining alpha contamination
Objectives of the study

1. Relation between iodine-134 activity and amount of fissile material dissemination → Elaboration of abacus

2. Application: the unit A case

3. Unit A scenario modelling (more accurate approach)
OSCAR v1.4: a code for simulating the contamination

- Simulation of corrosion, fission product and actinide transfer in nuclear circuits
 - Calculation of masses and activities of CP/FP/actinides in every point of nuclear circuits as function of time
OSCAR v1.4: a code for simulating the contamination

- 3 computation schemes:

Computation scheme used for the study

Release of ACTINIDES
- Alpha emitters (Ex: 242Cm)
- Fissile nuclides (Ex: 239Pu)

Corrosion Products
Actinides
Fission Products
First objective: Elaboration of abacus

- Simulation of fissile material disseminations for each French reactor series, for:
 - Different amounts of fuel released in the primary coolant,
 - Different durations of fuel release,
 - Different burn-up of the fuel,
 - Different kind of fuel (UO2 and MOX)

NB: when a fissile material dissemination occurs, it lasts until the end of the cycle

- → take the Iodine-134 activity at the end of the cycle

Exemple: 50g dissemination of UO2 fuel for 350 EFPD
First objective: Elaboration of abacus

- Example of abacus

UO2 fuel – 2nd cycle

Iodine 134 - Activity (MBq/t)

Duration of the dissemination (EFPD)

- 50 days dissemination
- 200 days dissemination
- 250 g disseminated
2nd objective: application

- Unit A experienced a fissile material dissemination

Evolution of the I-134 activity (MBq/t)

- Beginning of the dissemination
- Activity at the end of cycle
2nd objective: application

Dissemination abacus for unit A scenario

I-134 activity (MBq/t) vs EFPD

~70 g
3rd objective: Unit A scenario modelling

- Unit A scenario modelling, using the OSCAR v1.4 code, taking into account:
 - Evolution of the power during the cycle
 - Evolution of the B/Li concentrations

![Graph showing the evolution of I-134 activity (MBq/t) over days with three cycles (i, ii, iii) and two concentration levels (70 g, 50 g).]
3rd objective: Unit A scenario modelling

- Calculation of the alpha emitter contamination on the RCS surfaces

Graph:
- **Y-axis:** Arbitrary unit
- **X-axis:** Time (0 to 1400)

Legend:
- Under and out of flux surfaces
- Preliminary results

Note:
This document contains proprietary information and shall neither be reproduced nor copied in whole or in part nor shall it be furnished to third parties without the prior written permission of EDF SA.
3rd objective: Unit A scenario modelling

- Prediction of the alpha emitter contamination

- 7 cycles after the dissemination cycle are needed to decrease the contamination close to the level observed before the dissemination event
3rd objective: Unit A scenario modelling

- Focus on cycle iii (after the dissemination cycle)
- The defective assembly has been removed…but, according to the radiochemical specifications, the measurements show a “fuel cladding defect presumption”

The OSCAR calculation shows that without any defective fuel rod, the activity in Xe-133 and Xe-135 remains high due to the residual contamination (previous cycle « ii »)
Conclusion

• This study is an exploratory one which results need to be consolidated

• The comparison between alpha surface contamination calculations and alpha measurements (swipes) will be undertaken shortly

• In order to reduce uncertainties, the knowledges regarding actinide behavior (during power and shutdown transients) need to be improved

• The study shows a good potential in terms of alpha risk management
MERCI