Inventory of radioactive wastes and management of RAW at the Armenian ANPP

Armenian Nuclear Power Plant

Konstantin Pyuskyulyan <u>pyuskyulyan@bk.ru</u> Karine Ghazaryan <u>ghazaryuan.karine@gmail.com</u>

ISOE symposium Beijing, China October 22 - 24, 2019

GENERAL

Operation and decommissioning of the nuclear power plant results in generation of the large amount of waste. And appropriate radioactive waste (RAW) management is important in terms of safety, RAW impact on the environment, impacts on personnel working directly in the NPP premises, impact on inhabitants living in immediate vicinity and in the surroundings of a NPP, as well as in terms of RAW long-term storage or disposal. The most critical group among all generated waste is a group of RAW.

Radioactive waste can be divided according to its origin and way of its generation. It can be classified into the following main groups:

- Historical waste
- Operational waste
- ➤Waste from decommissioning

RAW MANAGEMENT AT THE ANPP

RAW management is a long time issue that cannot be solved without defined concept or preplanned steps. Each type of RAW requires a specific way of processing to transform it into safe form in which it can be temporarily stored and subsequently treated for its final disposal in the repository.

Radioactive waste management at ANPP is regulated by the following:

- Appropriate Laws of Republic of Armenia;
- Legal standards, decisions of the RA government;
- National standards and rules;
- Guides, instructions and programs for RAW management at the ANPP;
- Quality Assurance Programs and Administrative Management Programs for RAW Management at ANPP;

These documents define the procedures for radioactive waste management, responsible persons, RAW transportation routes, their accounting, methods for monitoring waste management and the state of storage facilities.

RADIOACTIVE WASTE CLASSIFICATION

RAW classification by activity level

Waste category	Specific activity, kBq/kg			
	Beta-emitting nuclides	Alpha-emitting Nuclides (except of transuranium)	Transuranium nuclides	
Very low-level	less than 10 ²	less than 10 ¹	less than 1	
Low- level	from 10 ² to 10 ³	from 10 ¹ to 10 ²	from 1 to10 ¹	
Intermediate level	from 10 ³ to 10 ⁷	from 10 ² to 10 ⁶	from 10 ¹ to 10 ⁵	
High level	more than 10 ⁷	more than 10 ⁶	more than 10 ⁵	

RAW GENERATION AT THE ANPP (1)

Radioactive waste at the Armenian NPP is generated during the daily cleaning and decontamination of the premises of the controlled area (KA), during the decontamination and repair of equipment, during maintenance activities in the KA, etc.

RAW also includes parts of technological equipment that are not subject to decontamination or irradiated in the reactor, instrumentation, piping or protection fittings, overalls and personal protective equipment contaminated above acceptable levels, ventilation systems filters, spent sources of ionizing radiation, appliances, special laundry, sanitary locks water, etc.

Radioactive waste generated at the ANPP can be divided according to its origin and way of its generation. It can be classified into the following main groups:

- Historical waste the RAW which has been generated during the operation of NPP since its commissioning. In case of ANPP this type of RAW has not been treated or conditioned (only part of liquid RAW has been processed at deep evaporation facility). The RAW are stored within the premises of ANPP waiting for further processing and final disposal.
- Operational waste the RAW that generated during NPP operation. These include RAW typically generated at NPP which are not currently processed (only part of liquid RAW has been processed at deep evaporation facility), but only collected and stored waiting for further treatment. According to planned duration of NPP operation and based on the assessment of historical RAW stored at the plant, it is possible to estimate further amount of such waste that will be generated till planned plant shutdown.

RAW GENERATION AT THE ANPP (2)

RAW generation from decommissioning

✓ *Primary RAW from decommissioning* – RAW that will be generated during NPP decommissioning after plant shutdown. Primary RAW are generated during dismantling and demolition of the decommissioned nuclear power plant structures. A standard status of NPP before starting its decommissioning is the status, when all systems are drained. And fuel is not stored in the Spend Nuclear Fuel pools any more. This means that most of the primary radioactive waste from decommissioning will be of solid, not liquid nature.

✓ **Secondary RAW from decommissioning** – the RAW that will be generated during decommissioning of NPP as a <u>consequence of primary RAW removal</u>. NPP decommissioning should to take into consideration a significant amount of secondary RAW, such as contaminated water, used cleaning and decontamination agents, used tools and equipment, demolition waste (dust, sawdust, etc.), used clothes and personal protective means, etc.

RAW STORAGE FACILITIES AT THE ANPP (1)

Solid radioactive waste stored at ANPP in:

- Solid low-level waste storage facility
- Solid intermediate-level storage facility
- Solid high -level storage facility

Liquid radioactive waste storage system.

Liquid radioactive waste are temporary stored at the ANPP in:

- Six tanks for evaporator condensate storage (ECT 1-6) total volume -3720 m³
- Two tanks for high level sorbents storage total volume 430 m³

Currently liquid RAW storage system is filled to 65% of its volume

RAW STORAGE FACILITIES AT THE ANPP (2)

Filling of RAW storage facilities at ANPP

Low-level solid RAW storage facility

Composition of solid LL RAW:

Combustible (paper, plastic, wood, textile, etc) – 75%
Non- combustible – (metal, thermal insulation, construction waste) -25%.
Storage facility is filled to 39% of volume

>Intermediate- level solid RAW storage facility

Composition of solid IL RAW:

➤Combustible - (paper, plastic, wood, textile, etc) – 20%

➢Non- combustible – (metal, thermal insulation, construction waste, slit, activated

spent ion-exchange resins, salt cake drums) -75%. Filling degree – 46, 5%

In 1996 on the roof of the special building a special storage area was organized for storage of DEF (salt cake) drums.

RAW STORAGE FACILITIES AT THE ANPP (3)

High-level solid RAW storage facility

Composition of solid HL RAW:

 \blacktriangleright Combustible (paper, plastic, wood, textile, etc) -5%

➢Non- combustible – (metal, disused sources, I&C, parts of technological equipment) -95%.

Storage facility is filled to 48% of volume

Very low- level solid RAW storage facility

There is no VLL solid RAW facility at the ANPP

Management of liquid radioactive waste (LRW) (1)

Management of liquid radioactive waste (LRW) (2)

The system of collection and processing of liquid radioactive wastes, as to the original design, includes:

>System of waste water collection and processing, which includes:

- 2 tanks of low level sorbents
- 3 tanks of waste water
- 2 evaporator units
- 2 lines of special water purification

>Liquid radioactive waste storage system, which includes:

- 2 tanks of high level sorbents
- 6 tanks of evaporator concentrate

Management of liquid radioactive waste (LRW) (3)

Radioactive waste water:

- annual generation 8 000-13 000 m³/y;
- sedimentation in a tank (LLS);
- mechanical filtration;
- evaporation 2 evaporator output 6 m³/h each;
- ion exchange filtration;
- evaporator concentrate stored in tanks;
- evaporator distillate released into the environment after radiation control.

Evaporator Concentrate (EC):

- Annual generation 30-60 m³;
- Between $50 70 \text{ m}^3$ annually are transferred to the DEF for processing.

Evaporator Concentrate parameters

- total salt content 170 g/L;
- boric acid content 57 g/L;
- Co-60 1.2x10⁵ Bq/L
- Cs-137 1.3x10⁶ Bq/L

Management of liquid radioactive waste (LRW) (4)

The ANPP is processing liquid radioactive waste by means of deep evaporation.

Solidified liquid radioactive waste is filled into carbon steel (type 3 steel) drums of 150-250 L volume.

These drums are then stored in the Intermediate Level Solid Waste Storage in the auxiliary building and on the roof of the Special Building.

Isotope and chemical composition of ILW-containers with salt melt, formed after processing of liquid radioactive wastes:

Isotope composition	Average Specific activity, Bq/kg
Cs-134	Cs-134 – 5,3x10 ⁶
Cs-137	Cs-137 – 2,2x10 ⁶
Co-60	Co-60 – 4,2x10 ⁵

Chemical composition of contents of DEF containers				
Composition	Unit	Quantity		
рН		8-12		
BO ₃	g/kg	5-120		
NH ₄	mg/kg	20-250		
CL_	g/kg	0,04-4,0		
Salt content	g/kg	0,5-480		
Na ₊	g/kg	2-100		
K ₊	g/kg	1-30		
Fe_	mg/kg	18-120		
No ₃	mg/kg	5-20		

Salt Cake Generation, m³

Spent Ion Exchange Resins

Annual generation in the last years - about 4 m^3/y ;

Stored quantity – 172 m³. Spent ion exchange resins are stored at ANPP in the auxiliary building in a stainless tank.

Currently no treatment of spent ion exchange resins is undertaken

Cubic meters

Management of solid radioactive waste (SRW) (1)

All waste generated in the controlled area is considered as radioactive waste.

The ANPP operates a technological scheme for handling SRW, which provides for their collection, sorting, transportation and safe storage.

SRW are not treated yet at the ANPP

Management of solid radioactive waste (SRW) (2)

>Storage of solid low-level radioactive wastes. Total storage volume is 17051m³.

- Storage of solid intermediate-level radioactive waste. Total storage volume is 1001.2 m³
- >Temporary storage for the drums with salt cake. Area 655 m².
- >Storage of solid high-level radioactive waste. Total storage volume of is 78.3m³

It. No.	Storage facility name	Storage capacity,	RW quantity in the facility	
		m3	m3	% of filling
1	Low level SRW storage facility at ANPP	17051	6626	39
2	Intermediate level SRW storage facility at ANPP (various IL SRW, including salt cake drums- 1850 drums)	1001.3	464.5	46.4
3	Temporary storage of the drums with solidified waste (3000 drums).	Area 655 m ²	435	100
3	High level SRW storage facility at ANPP	78,34	37.5	47.9

Inventory of Solid Waste as of 01 January 2019

Low level solid waste activity

Component	Specific activity, Bq/kg		
Metal	 ¹³⁴Cs -4400; ¹³⁷Cs -9000; ⁶⁰Co -5500; ^{110m}Ag -800 ; ⁵⁴Mn -890; ⁵⁸Co -400; ⁹⁰ Sr/⁹⁰Y -150; ⁵⁹Fe - 560; ⁹⁵Nb -650; ¹⁴¹Ce -650; Alpha active - absent 		
Metallic facing	 ¹³⁴Cs -4400; ¹³⁷Cs -9000; ⁶⁰Co -5500; ^{110m}Ag -95; ⁵⁴Mn -890; ⁵⁸Co -400; ⁹⁰Sr/⁹⁰Y -150; ⁵⁹Fe - 560; ⁹⁵Nb - 650; ¹⁴¹Ce -150; Alpha active - absent 		
Plastic	¹³⁴ Cs -2000; ¹³⁷ Cs -2000; ⁶⁰ Co -3000; ⁵⁸ Co -1200; ⁹⁰ Sr/ ⁹⁰ Y -150; Alpha active - absent		
Polyvinyl film	¹³⁴ Cs -3000; ¹³⁷ Cs -1200; ⁶⁰ Co -400; ⁵⁸ Co -380; ⁹⁰ Sr/ ⁹⁰ Y - 50; Alpha active - absent		
Rubber	¹³⁴ Cs -1000; ¹³⁷ Cs - 1000; ⁶⁰ Co - 800; ⁵⁸ Co - 300; Alpha active - absent		
Wood	¹³⁴ Cs - 1000; ¹³⁷ Cs - 500; ⁶⁰ Co - 800; Alpha active - absent		
Paper, textile	¹³⁴ Cs - 3500; ¹³⁷ Cs - 10000; ⁶⁰ Co - 6000; ^{110m} Àg - 350; ⁵⁴ Mn - 600; ⁵⁸ Co - 250; ⁹⁰ Sr/ ⁹⁰ Y – 200; Alpha active - absent		
Concrete	¹³⁴ Cs - 800; ¹³⁷ Cs - 4000; ⁶⁰ Co - 3500; Alpha active - absent		
Glass, ceramics	¹³⁴ Cs -600; ¹³⁷ Cs - 1000; ⁶⁰ Co - 500; Alpha active - absent		
Heat insulation	¹³⁴ Cs - 500; ¹³⁷ Cs - 2000; ⁶⁰ Co – 400; Alpha active - absent.		

INTERMEDIATE LEVEL SOLID WASTE ACTIVITY

ILW	Location	Volume m ³	lsotope content	Average specific activity	Packaging type	%
ILW	Special building	99,1	Cs-134 Cs-137 Co-60	2,4x10 ⁶ Bq/kg 6x10 ⁷ Bq/kg 2,8x10 ⁶ Bq/kg	Metal containers of different size	9,9 of storage capacity
	Composition of ILW					
ILW	Metals	2,97	Ν	lo data	Without packaging	3,0 of ILW volume
ILW	Paper, textiles	24,78	Cs-134 Cs-137 Co-60	5,5x10 ⁶ Bq/kg 8,5x10 ⁷ Bq/kg 6,8x10 ⁶ Bq/kg	Metal containers of different size	25,0 of ILW volume
ILW	Mixed	71,35	Ν	lo data	Metal containers of different size	72 of ILW volume

Questions?