#### Bruce Power's Role in Phasing out Coal in Ontario ISOE International Symposium

January 9th, 2017



#### Len Clewett – EVP & CNO



Innovation at work

### **Overview of Bruce Power**

• Nuclear Safety is our core value



- Bruce Power is Ontario's largest independent power producer, generating 30% of the Province's total electricity supply in 2014, 2015, and 2016
- Located on the shores of Lake Huron, roughly 250 km northwest of Toronto



### **Overview of Bruce Power**

Bruce Power L.P.

| The Issuer                  | Canada's only private nuclear generator                                                                                                                      |                       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Ownership                   | <ul> <li>~97% owned by OMERS<sup>1</sup> and TransCanada<sup>2</sup></li> <li>~3% owned by unions and employees</li> </ul>                                   |                       |
| Bruce Power Facility        | <ul> <li>8 reactors on a 2,300 acre site leased from OPG</li> <li>2 physically separate stations (Bruce A and Bruce B</li> </ul>                             |                       |
| Installed Capacity          | • ~6,300 MW                                                                                                                                                  |                       |
| Technology                  | Reactors employ proven CANDU technology                                                                                                                      |                       |
| Regulatory Body             | Canadian Nuclear Safety Commission (CNSC)                                                                                                                    |                       |
| Implementation<br>Agreement | <ul> <li>Long-term agreement with the IESO expiring in 206</li> <li>Fixed price (subject to escalation and periodic adjust electricity generation</li> </ul> | 4<br>stments) for all |



Innovation at work

### **History of Bruce Power**

Bruce Power began operating the facility in 2001; upon completion of the refurbishment of Units 1 and 2 in 2012, all 8 reactors were operational for the first time since 1995.





### **Phasing out Coal in Ontario**





### Bruce Power's Role in Phasing out Coal in Ontario

- By refurbishing Units 1-4 from 2003-2012, Bruce Power returned over 3,000 Megawatts of Carbonfree power to Ontario's electricity grid.
- This provided 70% of the energy the province needed to shutdown its coal plants.
- Coal use in Ontario went from 29% of the province's electricity in 2000 to zero in 2014.





## Bruce Power's Role in Phasing out Coal in Ontario (Cont'd)

- Smog days dropped dramatically as the Bruce Power units were returned to service.
- In 2005, there were 53 smog days in Ontario, while there have been none since 2013, the final summer of coal use in the province.





Innovation at work

## Meeting Ontario's Long- Term Climate Change Goals

- In December 2013, the Ministry of Energy released its Long-Term Energy Plan (LTEP), which indicated that refurbished nuclear is the most costeffective option available to meet Ontario's baseload requirements, while producing no greenhouse gas emissions.
- The plan assumes the life extension of remaining Bruce Units 3-8, equivalent of 5,000 MW.



### **Bruce Power Life-Extension**

- Bruce Power will continue to play an important role in achieving Ontario's long term climate change goals through the life extension of Bruce Units 3-8.
- There will be a \$13 billion private investment program in six of its units over 20 years, extending their life another 40 years.
- This will help Ontario and Canada meet their carbonreduction goals, as their focus shifts to a clean energy system.



### **Life Extension Schedule**







### **Building on lessons learned**





Innovation at work

# What is MCR?



| Facilities & Infrastructure | No |
|-----------------------------|----|
| Pressure tube replacement   | No |
| Calandria tube replacement  | No |
| Feeder tube replacement     | No |
| Steam generator replacement | No |
| Bulkheads/infrastructure    | No |



### **Project overview**

- 1. Main Steam Supply Piping
- 2. Steam Generators
- 3. Main Primary Supply Pumps
- 4. Feeders
- 5. Calandria Assembly
- 6. Fuel Channel Assembly
- 7. Fuelling Machine Bridge
- 8. Moderator Circulating System





### **Detube / Retube Scope**

- Safely remove & replace all 480 fuel channels & calandria tubes while meeting all relevant regulations, standards & codes
- Procure all reactor components & tooling to perform the work
- Train staff to execute the work







### **Feeder Program Scope**

- Feeder cabinet & feeder removals
- Upper feeder
   installation
- Lower feeder installation





### **Steam Generator Replacement Scope**

- Specify, design & buy replacement steam generator cartridges
- Prepare modifications for affected interfacing systems
- Create openings in the reactor building & steam drum enclosure roofs to facilitate steam drum & steam generator removal
- Remove, temporarily relocate & subsequently reinstall other defined interfering components
- Remove, inspect, refurbish & reinstall steam drum portions of steam generator assemblies
- Remove & replace steam generator cartridges
- Inspect and disposition of results





### Lead In / Lead Out Scope

- Transition from operations to construction
  - Defuel the reactor
  - Drain & dry moderator & primary heat transport systems
  - Install & remove the bulkheads (containment isolation)
  - Establish layup requirements
  - Return unit to service once construction complete





#### **Bulkhead Installation & Removal Scope**

- Material procurement and fabrication of bulkheads
- Installation/ Removal of bulkheads





### **Facilities & Infrastructure Scope**





### **Balance of Plant Scope**

- 16 MCR recurring scopes
  - Calandria inspections
  - Preheater inspections
  - HT pressurizer inspections
  - PHT/boiler snubbers
  - PHT bellows
  - Other routine and PIP inspections
  - Heat Transport FB&R PLC
  - Start-up instrumentation
- ~ 50 Asset Management scopes
- Regulatory/improvements, Periodic Safety Review
- Normal outage maintenance



#### Waste management & demobilization scope

- Manage & dispose all radioactive & nonradioactive waste generated as a result of MCR refurbishment activities
- This includes:
  - Low and intermediate radioactive waste generated from MCR projects (eg: PPE, components, IX resins)
  - Specific disposal of major components such as steam generators (low level), fuel channels (intermediate level)
  - Non-radioactive hazardous waste (chemical, asbestos)
  - Infrastructure waste (landfill, recycling)





# **Questions?**

