

Overview of the EPRI Radioactive Material Monitoring and Control Guideline

2010 ISOE North American ALARA Symposium/ EPRI RP Conference January 11-13, 2010

Phung Tran Sr. Project Manager, EPRI Radiation, Chemistry, Low-Level Waste

RAM Control Guideline

- Erosion of worker/public confidence due to inconsistent monitoring and releasing practices.
- To promote consistency and best practices for monitoring and controlling radioactive materials.
- Guideline published 12/2009
- Presentation to NRC 12/2009
- Enhance worker and public confidence
- Save money and time by defining practical detection capabilities for release of materials and personnel

RAM Control Guideline Committee Members (>90% Reactor Units Represented)

RAM Control GL Document Chapters

- Introduction
- Definitions
- Equipment and Material Monitoring and Control
- Personnel Contamination Monitoring
- Calibration and Performance Checks of Personnel and Equipment Contamination Monitors
- References
- Appendices
 - Appendix A: Example Release Process
 - Appendix B: Example Material Release Plan and Form
 - Appendix C: Monitoring Considerations
 - Appendix D: Determination of MDC
 - Appendix E: Information on Managing Workers with Radiopharmaceutical Uptakes

Highlights

- Chapter 3: Equipment and Material Monitoring and Control
 - Monitoring Responsibilities and Notification Process
 - Plant Personnel (including contract workers)
 - RP Supervision
 - RP Technicians
 - Unconditional Release of Materials from RCA
 - Tools, Equipment, Non-Volumetric Materials
 - Items with potential for internal contamination
 - Personal Items (e.g. flashlights, pagers, cell phones)
 - Volumetric materials (e.g. soil, concrete)
 - Vehicles

Highlights

- Chapter 4: Personnel Contamination Monitoring
 - Responsibilities
 - Plant personnel
 - Radiation Protection Technicians and Supervision
 - Contamination monitoring requirements for radiological areas
 - Provides an example of a whole body contamination monitor flow process

Highlights

• Chapter 5: Calibration and Performance Checks

Summary of Recommendations for Calibration and Performance Checks of Personnel and Equipment Contamination Monitors:

Type of Monitor	Calibration Source	Detection Capability	Check Source
β Whole Body	Tc-99	5,000 dpm (83 Bq) beta	5,000 betas/min. equivalent Tc- 99, 100 cm2
γ Whole Body	Cs-137	RCA/PA exit: 75 nCi (2800 Bq) Cs-137 at 6 in.	75 nCi Cs-137 equivalent
γ Article Monitor	Cs-137	5,000 dpm Co- 60 equivalent	5,000 dpm Co- 60 equivalent
β Hand and Foot	Tc-99		5,000 betas/min. equivalent Tc- 99, 100 cm2

• Also provided example methodology (in Appendix) for evaluating impact of beta and gamma hard-to-detect (HTD) radionuclides on detection capabilities using ANSI/HPS N-13.12-1999

Together...Shaping the Future of Electricity

