

Beaver Valley Power Station Source Term Reduction Strategy, Struggles and Success

by: Stan Baker, Radiation Protection Manager Presented by: Doug Noble, RPM Davis Besse

2009 ISOE/EPRI International ALARA Conference Fort Lauderdale, FL January 12, 2009

Presentation Outline

- Plant History and Radiological Conditions
- Benchmark Most Improved
- Unit 1 and 2 Source Term Reduction
 - ✤ Strategy
 - Struggles
 - Successes

> RP Metrics & Measures

- What's Not Improved
- What is Improved

Future Plans

✤ We Know What to Fix

Beaver Valley

- Westinghouse 3 Loop PWR
 - Unit 1 892 MW(e)
 Commercial 10/1/76
 - Unit 2 846 MW(e)
 Commercial 11/17/1987
- Number of employees: ~ 700

Beaver Valley U2 Radiological History

Outage	Dose Goal (rem)	TLD Dose (rem)	RWP-hrs. (x1,000)	Effective Dose Rate (mrem/hr)	Effective Dose Rate (rem/day)	Duration (days)
2R01		369.862			4.803	77
2R02		290.805			3.635	80
2R03	260	245.060			4.154	59
2R04	240	198.818			2.455	81
2R05	147	171.022	152.271	1.12	3.800	45
2R06	140	168.736	243.023	0.69	1.577	107
2R07	105	81.181	135.248	0.60	1.845	44
2R08	125	105.719	143.505	0.74	3.304	32
2R09	97	63.591	98.552	0.65	2.765	23
2R10	74	97.279	153.659	0.63	4.248	28
2R11	80	75.053	101.910	0.74	3.127	24
2R12	137	174.637	167.631	1.04	4.259	41
2R13	88	79.662	139.736	0.57	2.096	38

Beaver Valley U1 Radiological History- Refueling Outages

				Effective	Effective		
	Dose Goal	TLD Dose	RWP-hrs.	Dose Rate	Dose Rate	Duration	
Outage	(rem)	(rem)	(x1,000)	(mrem/hr)	(rem/day)	(days)	
1R01		538.076			1.516	355	
1R02		610.16			3.113	196	
1R03		688.449			6.495	106	
1R04		450.3			5.298	85	
1R05		605.185			5.933	102	
1R06		622.56			7.592	82	
1R07		980.094			8.449	116	
1R08	450 .	407.729			4.118	99	
1R09	390 .	379.677			4.574	83	
1R10	275 .	250	240.004	1.04	3.906	64	
1R11	235 .	249.864	223.459	1.12	5.099	49	
1R12		223.885	270.575	0.83	1.947	115	
1R13	270 .	208.923	226.728	0.92	4.018	52	
1R14	166 .	151.267	192.517	1.12	3.981	38	
1R15	132 .	185.872	211.182	0.88	3.549	52	
1R16	152 .	141.307	158.367	0.89	5.234	27	
1R17-SGR	260 .	207.385	450899	0.46	3.152		
Uprate						64	
1R18	98.	85.177	151.557	0.56	2.757	30	
1R19	60.	57.303	116.39	0.49	1.91	30	

Benchmarking Goal: "Clone" Practices & **Technologies to Exactly Replicate Results**

Which Westinghouse Plants Have Shown Big Improvements in Source Term over past 8 to 10 years?

- Similar in Design, Age, Operating History or Huge Change
- Looked at Dose Rates- (Published OE Results)
 - Not Outage CRE: Impacted by Emergent Work, 10 Yr ISI, etc.
- Selected Significantly Improved Plants in Past 8 Years (Sigificantly Contaminated to Cleanest)
 - VC Summer
 - Turkey Point-3,4
 - DC Cook 1,2
- What are they doing that we are not?
- Can we "Clone" their practices and technology use into Beaver Valley?

Benchmarking: What was Common?

"CLONE" Practices & Technologies to Exactly Replicate Results

Shutdown Practice

- Acid Reducing Chemistry + 12-16 HRS
- RCP Operation for Forced Oxygenation: 1 RCP or None
- Maximize Clean-Up Flow Rates T 1/2 = 4- 8 hours
- Technology- Clean-up in CVCS
 - Advanced Electrostatic Resin Specifically Engineered for Extremely Small, Surface Charged, Particle Removal Used PRC-01
 - Shutdown, I/S T= 2 hrs
 - New Charge & Used for Start-Up
 - Single Vessel I/S for Shutdown
 - * No Zinc
- Results
 - Declining Dose Rates and Contamination Levels
 - ✤ Sustained Dose Rate Reductions, -30% to -35% for 7 cycles

Benchmarking: How Good are they Today? Snapshot

- DC Cook-2
 - ✤ ~ 110 to 150 REM 30 Day RFOs 4 cycles ago
 - * 32.3 REM, 30 day U2C18
- Turkey Point 3, 4
 - ☆ ~ 150 to 190 REM RFOs 7 Cycles Ago
 - ✤ 4R24 2009: 75.617 REM, 40 Days

VC Summer

- ✤ ~150 to 170 REM 7 cycles ago
- ✤ R18: 59.442 REM ED, Est. TLD 49 REM
- * 30 PCE's
- ✤ 0.052 uCi/cc Co-58 H2O2 Peak (Yes Peak)
- SG Bowl Dose Rate Change: R12 to R18= -57%, R18 SG Avg 1.174 R/hr

Selected Initiatives for Beaver Valley Source Term Reduction

Our Strategy: "Clone" Plants with Greatest Change

Beaver Valley U1 U2 Shutdown Chemistry Strategy

- 1. Rapid RCS Cooldown
- 2. Reduced Inventory Crud Burst
- 3. Maximized Letdown Purification Flowrate
- 4. EPRI Clean-Up Goal ≤ 0.05µCi/ml Prior to Rx Cavity Flood-up
- 5. U1 U2 PRC-01M Speciality Media Technology:
 - Prototyped PRC-01 U1R14 2001
 - Second Generation PRC-01M, Advanced Technology Now In Use
 - Application in SFP and CVCS
- 6. U1 Zinc Injection 6 cycles
 - U2 SGR & Uprate 1R18 -No Zinc

BVPS Shutdown Plan Execution:

Very Rapid Cooldown Rate

- 1R19: Mode 5 in 6.3 hrs
- 2R14: Mode 5 RCS 200°F in 5.3 hrs (record)

Reduced Oxidation RCS Inventory

- Typically 2 of 3 Loop Stop Valves
- ✤ A & B Loop Closed Prior to Peroxide Injection

Time to Peroxide Injection (Most Recent Outages)

- ✤ 1R19 = 21 Hrs
- ✤ 2R14 = 22 Hrs

Shutdown CVCS Clean-Up Bed In Service

- ✤ 1R19: T= ~ 1 hr as Planned, RCS Temperature 494° F
- ✤ 2R14: T= +4 hrs vs ~1 hour as Planned, 281° F
 - Failure of Reach Rod 2R12, 2R13 and 2R14

Shutdown Plan Execution:

Time to Clean-Up from Oxidation to 0.05 uC/cc Goal,

1R19: Actual 57 hrs. (1 Loop Isolated)

✤ 2R14: Actual 43 hrs. (1 Loop Isolated)

RP Source Term Metrics

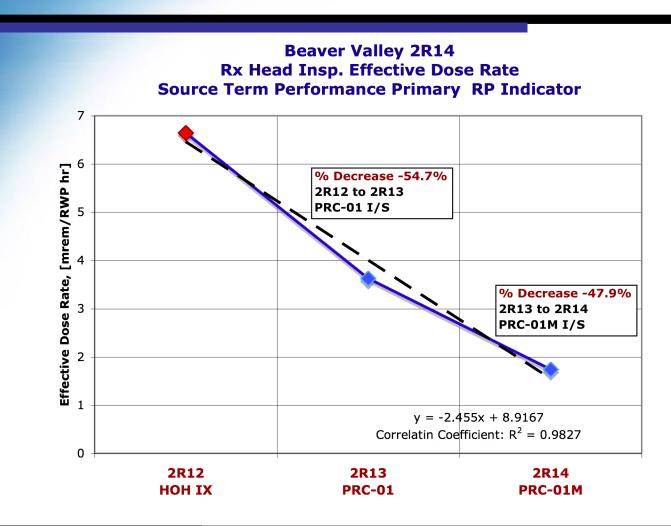
Components

- RV Head
- Steam Generator HL CL Averages
- Bowl Dose Rates Unit 2
- PCE's Lower
- Effective Dose Rate

Outage Struggles 2R14

➢ U2R14

Loop B Higher Dose Rates


- No Letdown Purification During First 4 Hours of RCS Cooldown
- RCS at 281°F when PRC-01M Bed placed I/S

Emergent Work

- Extensive Alloy 600 Weld Repair Issues
- CVCS Purification Demin Not Available on Start-Up
 - Demineralizer Valve Reach Rod Failure
 - 5 Days of No RCS Clean-Up at Start-Up

2R14: What's Evidence of Lower Source Term? Components: Rx Vessel Head Effective Dose Rate

Outage Struggles 1R19

➢ U1R19

- Emergent Work
- CVCS Purification
 - 2 Vessels Loaded with 2 Different Media
 - Operated in Parallel MB Bias flow Away from Specialty Resin Bed
 - 110 GPM to 140 GPM
 - Specialty Resin Demin Not Available on Start-Up for 5 days
- ✤ SFP Demin Not Configured with Specialty Resin

1R19 PCE Performance

- The Station ALARA Managers Committee established a top-quartile goal of 30 events with a stretch goal of 25
- The probable causes and locations

CATEGORY	TOTAL NUMBER	PERCENT OF TOTAL	AREA	TOTAL NUMBER	PERCENT OF TOTAL
Equipment/material uses	13	39%	Leg / knee	22	67%
Workers preparation practices	10	30%	Torso	7	21%
Equipment condition	5	15%	Arm	2	6%
Workmanship	4	12%	Foot	1	3%
Environmental conditions	1	3%	Face	1	3%

Twenty-seven of the thirty-three or 81.8% of the events are attributed to Human Performance (HuP) error

Post Outage Issues

IR 18: Difficulty Sluicing Specialty Resin Bed

- Weak Acid Macroporous Substrate
- Modified Surface Chemistry
- Radiation Degradation Probable Cause

Corrective Action 1R19: Changed to Second Generation Techonology, PRC-01M (Modified)

- Changed to Turkey Point 3,4 Use of PRC-01M- No Sluicing Issues
- Strong Acid Cation Gel Resin Substrate
- Modified Surface Chemistry

2010 Plan for Improvements

Extending Use of Specialty Resin

- Start-Up and On-Line Use
- Continuing Shutdown Use

Strengthen Source Term Monitoring Program

- ✤ Correlation with Chemistry
- Electronic Dosimeters Used as Constant Radiation Monitors on Components
- Evaluating Use of EdF Method Source Term Monitoring
 - CZT Detectors
 - Measuring Deposited Activity, uCi/dm2
 - Standardized EdF Method

Outage Pre-Planning and Maintenance

✤ Reach Rod Repairs at U2 - Problem in Past 3 Outages

Questions

