

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Demonstration of Advanced 3D ALARA Planning Prototypes EPRI Report: 1025310

Phung Tran, Senior Project Manager William Lehmbeck, ALARA Supervisor (Kewaunee) Principal Investigators: Paul Saunders, Ted Rahon, Dennis Quinn

North American ISOE ALARA Symposium

January 7-9, 2013 Ft. Lauderdale, FL, USA

Contents

- Overview
- Current (Typical) Approach
- EPRI Algorithm
 - General Methodology
 - Laboratory Test
 - Kewaunee Pilot and Full Demonstration Testing
- Participating Vendor 3D Prototypes
- Summary and Path Forward

- 1. Go to <u>www.epri.com</u> and log in.
- 2. Type in Product ID Number: 1025310 in Search box

3D ALARA Work Planning Prototype

Typical Dose Estimating Methodology

$$\begin{bmatrix} nrem \\ Rate \end{bmatrix} \times \begin{bmatrix} mrem \\ rad. \\ field \end{bmatrix} = Individual Worker Dose \begin{bmatrix} mrem \end{bmatrix}$$

- Industry is required to minimize radiation exposure to workers As Low As Reasonably Achievable (ALARA)
- Radiation Protection organization works with maintenance and work planners to identify opportunities for dose reduction
- However, <u>current process may not provide us with sufficient details to identify</u>
 <u>specific steps or assess opportunities to reduce dose</u>
 - Examples:
 - 1. Historical performance: Last time, we did it for 25 mrem so this time we must do it for 23 mrem OR
 - 2. Use "effective dose rate" and an "adjusted time estimate"
 - 80 man-hrs X $\frac{1}{4}$ = 20 hours on job location
 - Effective dose rate = total dose from last time/ total time

Advanced Tools for ALARA Job Planning and Dose Estimating Dose

Integration of Vendor Solutions with EPRI Technology

Methodology

- 3 step process:
 - 1. Source Activity Calculation
 - 2. Dose Rate Calculation
 - 3. Estimate Uncertainty

- Estimate activity of virtual source using iterative calculation
 - Reading
 - Shield configuration
 - Source location
- 2. Sum each source's gamma dose contribution to each Receptor point
- 3. Uncertainty: Reconstruct dose rate readings and compare to actual input

Laboratory Test Results

Input:

- Dose rate survey measurements (x, y, z)
- User identified potential sources, mean energy
- Worker location (x, y, z)

Output:

- Estimated source activity
- Estimated Dose Rate at a non-measured location

				🗖 Dose	Calculation								
					RemorCode -								
						Inc	ut File						
					testfileE.	CSV							
-					1	040**		Run Calculation					
Part Result.csv													
	A	В	С	D	E	F	G	195 1 151.885 .62518					
1	Result from	n TestFileE	.csv					195 2 .002 .44999					
2	READING	5						195 3 .003 .44996					
3	ID	Initial	Units	X	Y	Z	Calculated	196 2 .002 .44999					
4	1	9.5	mR/hr	8	0	3.3	9.427	196 3 .003 .44996					
5	2	5.5	mR/hr	8	6	4.4	5.965	197 1 151.885 .62518					
6	3	2	mR/hr	15	0	3.3	2.682	197 2 .002 .44999					
7	4	5	mR/hr	12	0	3.3	4.19	198 1 151.885 .62518					
8	5	1.8	mR/hr	16	2	2.5	2.316	198 2 .002 .44999					
9	WtAverDiff	slope	FigMerit										
10	0.44996	0.909	0.44996										
11	SOURCES:						199 3 .003 .44996						
12	ID	ActivityEst	Units	Х	γ	Z	MeanEnergl	200 1 151.885 .62518					
13	1	151.8852	mCi	0	0	3.3	662						
14	2	2.37E-03	mCi	8	6	6	662	Dose Calculation Complete					
15	3	2.50E-03	mCi	15	1	0	662						
16	RECEPTORS:						Dose to Receptors:						
17	ID	Exposure	Units	X	Y	Z	Note	Calculated Measured Recentor A 5 mR/hr 44 mR/hr					
18	A	5	mR/hr	11	0	3.3	4.4	Receptor B 2.4 mR/hr 2.1 mR/hr					
19	В	2.4	mR/hr	16	0	3.3	2.1						
20													

Tests Using Kewaunee Data from Charging Pump Room

9 Survey Readings

ocations are off locations are of 52 Survey Readings

19 Survey Readings

Example Results from Validation Testing Using Data from Charging Pump Room

Job Dose Estimates	Total Dose (mRem)
Plant estimate for job	21
Job estimate using algorithm	17
Actual job dose	~15

 <u>Uncertainty</u> <u>decreases</u> as more survey information around the worker location is used

 Calculated dose rates <u>correlate</u> <u>reasonably well</u> with measured

Testing Using Data from RHR Valve Maintenance Work

© 2013 Electric Power Research Institute, Inc. All rights reserved.

ELECTRIC POWER RESEARCH INSTITUTE

Example Test Results Using RHR Valve Maintenance Data– Pre-job Planning

- Used survey results for testing
- Enter 17 of the 18 readings and calculate last reading (repeat for all)
- Compared plant determined effective dose rate for Task 1 and Task 2 to <u>actual survey</u> and <u>algorithm calculation dose rate</u> (average of N10, L12, K14)

Task #	Task	Estimated Effective Dose Rate (mR/hr)	Actual Survey February 2012 Average Work Area Dose Rate (mR/hr)	Algorithm Calculated Average Work Area Dose Rate (mR/hr)
T1	Cut out and replace SI-351A/B	5.9	2.9	3.0
Т2	Remove and replace valve actuators	2.7		
Average	Kewaunee Estimated Effective Dose Rate Average	4.3		

 $\ensuremath{\textcircled{C}}$ 2013 Electric Power Research Institute, Inc. All rights reserved.

Enhancements

- Originally only used mean gamma energy for plant sources
- Based on utility feedback, added ability to insert isotopic breakdown for up to 4 isotopes (e.g. 50% Co-60, 50% Co-58)
- Used to estimate effect of gamma-ray shadows cast by large pipes, tanks, lead blankets, etc.
- Calculations agreed well with Microshield

Case		Microshield					Microshield Results mR/hr	Microshield Results mR/hr	Algorithm Results mR/hr	Algorithm Results mR/hr
No.	Description	Geometry	Dimensions	Covering	Shielding	Nuclides	at 1 ft	at 3 ft	at 1 ft	at 3 ft
1A	4" diameter pipe	line	6 ft long - measure at 12" away from line	1/4" steel	none	Co-60, Co-58 500 mCi each used in Microshield 50%- 50% used in Algorithm	3597*	779*	3,688	799
1B	4" diameter pipe	line		1/4" steel	2 Pb blankets		1,230	321	1,288	381
1C	4" diameter pipe	line	from end)	1/4" steel	4 Pb blankets		500	143	334	145
2A	2" valve	point	measure at 12" – away from point source –	1/2" steel	none	Cs-137, Cs-134 500 mCi each used in Microshield 50%- 50% used in Algorithm	5194*	576*	5,193	577
2B	2" valve	point		1/2" steel	2" steel		948	105	941	105
2C	2" valve	point		1/2" steel	8" concrete		732	81	773	86

Validation Test - Algorithm Geometry and Shielding Calculation Compared to Microshield

Prototype from CSA, Inc.

korder P	erson Ex	port/Import	Settings	About					
		Import File Assign File Change File Dose rate s Create Mov	tat itat						
ose rate	sumary								
Workord	er:		~	Ac	tivity: Type:	All			~
Date from	n: 🔲 2.	marca 2012	~	Da	te from:	2.	marca	2012 12:36:22	~
Date to	b: 2.	marca 2012	~	1	Date to:	2.	marca	2012 12:36:22	*
	Selection	Name	3	<u>~</u>	Se	election	Nam	8	^
•		WO-10002					A-Cle	an up/Decon	
		WO-10001	AD				A-Cut	out Old Valve	
		KW1007963	46	_			A-De	nob Old Intem	
		KW1007963	345	~			A-De	mob Old Value	~
Person:	All			 ✓ 	By Le	evel: Fi	oor	~	
CSV Re	port by: order [ities [valve			R	esult:		mR	
with	persons	Export				Sum		Cancel	

Photo credit: CSA, Inc

Prototype from Siemens Product Lifecycle Management Software, Inc.

Edit View Modeling Kinematics Operations Weld Robotics Human Tools Help ・ い い は 他 他 | X | 日 中 代 〇 | Q 風 | ⊕ ≪ 4 | ■ ■ 回 回 Snap ALARA Review - 0 8 Compone ALARA Planning * # 4 4 1 Dose Accumulatio ALARA Tasks 🥆 彩 🎊 💒 🔳 Scafolds and Tools 1* -33.75 0.05 H 4 4 H Sequence Editor 🔒 ALARA Plan Charging Pump A - AD 🗈 🏜 Remove motor cover Clean intrnals 🗄 🔒 Re-install pump springs 🗉 👪 Install new pump pistons 🔒 Test manual operations 🗉 📲 Re-install actuator 🗄 🔒 Test manual operatio Install access cover 🗄 🏜 Decontaminate area ١F Sequence Editor Path Editor Collision View + 0, 0, 0

> © 2012 Siemens Product Lifecycle Management Software Inc. Reprinted with permission

SIEMENS

Uses Identified

✓ <u>Enhance communication</u> of radiological conditions to workers

- Visualize dose rate gradients for pre-job briefs
- Utilize for post-job briefs to identify improvement opportunities

✓ *Improve accuracy and standardize* dose estimating process

- Consistent approach to dose estimation
- Uses data that you already have to take!

✓ *Improve decision-making* for applying dose reduction techniques

 <u>Optimize work</u> activities and work flow and develop <u>"What-if" scenarios</u> to further dose reduction options (e.g. impacts from shielding)

✓ <u>Document ALARA Options</u> and Decisions for Regulatory Compliance

✓ <u>Re-assess dose impacts</u> from changing radiological conditions

✓ Others (see report)

Summary and Path Forward

 Successfully designed an algorithm using typically known radiological parameters to more accurately estimate worker dose rates for planning purposes

- Integrated algorithm into two distinctly different 3D vendor simulation software packages
- Facilitated industry input and criteria to vendor development process
- ✓ Final algorithm anticipated to be released by 1Q 2013

Acknowledgments

EPRI & Utility Team:

- Mike Hale, Dominion-Kewaunee
- ★Bill Lehmbeck, Dominion-Kewaunee
- Cheryl Olson, Dominion-Kewaunee
- ★Ted Rahon, PhD, Co Physics
- ★Paul Saunders, Suncoast Solutions
- Dennis Quinn, CHP DAQ

FIATECH Team:

- ★ Sharon Bickford, FIATECH
- ★ Robert Wible, FIATECH
- Zac Zimmerman, Burns & Roe

3D Technology Providers:

- ★Amadeus Burger, CSA
- ★Noam Ribon, Siemens PLM

Together...Shaping the Future of Electricity

