Training and Qualification of RP Technicians and Radiation Workers

ISOE Board/Bureau Meeting November, 30 2016

- Radiation Protection Technicians at US power plant are trained and qualified in accordance with guidelines developed by the National Academy for Nuclear Training
- National Academy for Nuclear Training accredits all Operations, Technical (Maintenance, RP, and Chemistry), and Engineering training programs at US power plants
- ACAD 93-008, "Guideline for Training and qualification of Radiological Protection Technicians" establishes the initial and continuing training criteria for RP technicians

- ACAD 93-008 identifies the following expectations relative to RP Technician Initial Training:
 - Provide trainees with an understanding of station policy, procedures, and task performance standards
 - Develop trainees' understanding of the fundamental scientific principles that apply to radiological protection activities and operation of nuclear power plants.
 - Provide trainees with an understanding of the operating and radiological protection principles of specific equipment and components.
 - Evaluate trainees via written, oral, and practical examinations and by discussions of key knowledge, skills, and tasks needed for job performance.

 Qualify individuals to perform their jobs correctly and in a safe, reliable, and efficient manner.

- ACAD 93-008 identifies the following expectations relative to RP Technician Continued Training:
 - Maintain high performance level of radiological protection technicians
 - Improve knowledge and skills when changes in job scope are identified
 - Increase knowledge of selected applied fundamentals presented in initial training, with emphasis in areas of demonstrated weakness
 - Maintain awareness of responsibilities for safe operation of the plant and consequences of incorrect job performance

- ACAD 93-008 identifies the following expectations relative to RP Technician Continued Training: (continued)
 - Correct performance deficiencies determined through systematic evaluation of performance
 - Maintain knowledge of procedural changes for areas in which they are qualified
 - Emphasize lessons learned from plant and industry operating experience to prevent occurrence/recurrence of errors
 - Enhance performance through timely training for infrequent, difficult, and important tasks

RP Initial Training Processes

- Fundamentals / Theoretical Training: Performed in a Classroom Environment
 - Instructor Facilitated Lectures
 - Self–Study
- Radiological Control Techniques: Conducted in Dynamic Learning Environments or in the Plant
- Fundamentals / Theoretical Training Syllabus Includes:
 - Industrial Safety at the worksite
 - Administrative: RP and Station Procedures, Plant Drawings, Work Order System
 - Fundamentals: Mathematics, Physics, Electrical Science, Basic Atomic Structure, Chemistry
 - Plant Systems and Components

- Radiation Detection Equipment / Theory of Operation
- Radiological Protection Theory and Techniques: Radioactive Decay, Interactions with Matter, Biological Effects, External / Internal Dose Control, Contamination Control, Monitoring of radiological work
- Specialized Skills: example, Radwaste Packaging and Shipping

RP Initial Training Processes

- Initial Training Schedule:
 - Trainees attend training for approximately 40 hours/week
 - Duration of initial training is generally six to nine months
- Most RP training programs have two instructors that develop and deliver the lesson plans
- On the Job Training (OJT) and Task Performance Evaluations (TPE):
 - Following initial classroom training, trainees participate in OJT and TPE at the plant
 - OJT and TPE focus of qualifying RP technicians on specific tasks: Examples:
 - Use of radiation detection instruments
 - Personnel decontamination
 - Air sampling

Generating radiation work permits

RP Initial Training Processes

- RP Programs generally have 30 to 50 tasks that trainees must demonstrate their competency prior to working independently in the field
- Senior RP technicians generally provide the OJT with the trainees in the plant
- RP supervisors conduct the TPEs to determine the trainees' level of competence.
 - If the trainee successfully demonstrates the necessary level of competency during the TPE, the trainee is designated as 'qualified' to independently perform the task
- Trainees generally require nine to twelve months to complete all necessary task qualifications

RP Continued Training Processes

- Training to Improve Performance
- Continuing training needs are identified through ongoing training program evaluations and analyses of worker performance
- RP Department Training Committees:
 - Identify performance weaknesses
 - Determine if training is a viable method to improve performance
- RP Training Instructors develop lesson plans to address weaknesses
 - Training may be in classrooms or dynamic learning facilities.

RP Continued Training Processes

- Continued Training also includes refresher training in RP fundamental topical areas and recent industry Operation Experience
- Refresher training may include:
 - Instrument theory / operation / calibration
 - Effective methods for conducting radiological briefings
 - Use of remote monitoring equipment
 - Biological Effects of Radiation
 - Review of new RP procedures
- Operating Experience Training:
 - Prevention of unplanned exposure
 - Inadvertently release of radioactive material from the radiological controlled area
 - Causes and Contributors associated with industry alpha and airborne contamination events
- Duration and Frequency of RP continued training:
 - Approximately 24 to 32 hours each calendar quarter

Radworker Training Processes

ACAD 00-007, "Guidelines for Radiation Worker Training"

- This guideline provides a framework for developing and implementing radiation worker training (RWT) and radiological respirator training (RRT).
 - Radiation working training provides the knowledge and skills necessary to work safely within a radiologically controlled area (RCA)
 - Radiological respirator training provides training for use of respiratory protection equipment to limit internal radiation dose
- ACAD 00-007 recommends Radworker Training include the following topics:
 - Sources of radiation
 - Types and measurement of radiation
 - Biological effects of radiation and risks
 - Exposure limits and guidelines
 - ALARA principles; dose and contamination control
 - Use of dosimetry
 - Radiation work permit processes and radiological postings

Radworker Training Processes

- Radworker's must demonstrate their understanding of the training material by completing a written exam
- In addition to the classroom training and examinations; workers must demonstrate their abilities to wear protective clothing, select and follow the instruction of a radiation work permit, use effective ALARA principles, and control the spread of contamination at the jobsite
 - Usually conducted in a dynamic learning activity center that have mockups of radiological and contaminated areas
- RP supervisor and senior technicians generally provide the training and evaluations of worker competence in the dynamic learning environments
- Duration of Radworker Training (classroom and dynamic activity):
 - Eight to twelve hours

Portable Radiation Protection Technician Quals

Portable SRPT Quals

- Delivering the Nuclear Promise Initiative RP-12
- Eliminate Site Specific Qualifications of Supplemental Radiation Protection Technicians through Development of a Standard Vendor Training Program

Portable SRPT Quals

Desired end-state—

 Prior to arrival on-site, Supplemental Radiation Protection vendors will train and qualify their technicians using industry standard task list training criteria.

Value proposition (vision of excellence)—

- Eliminate on average the 2 to 3 days each site historically spends to qualify the supplemental RP technicians (SRPTs)
- Result in improved SRPT performance due to standardization of key radiation protection processes and procedures.

Portable SRPT Quals – Deliverables

- Standardized Industry Task
- Standardized Industry Processes/Procedures for key RP practices
- Standard training and qualification completed by the Vendor at their training facilities
- Standard acceptance criteria for meeting ANSI requirements (ANSI 3.1 1978 or 2014)

Portable SRPT Quals – Dates

- Issue the Efficiency Bulletin December 2016
- Implementation December 2017
- Key Items
 - Final Task List Complete (maybe)
 - Draft of the industry procedure/process December 2016
 - Final industry processes February 2017
 - Development of Supporting Task evaluation materials – July 2017

Portable SRPT Quals

- Develop the following standard training materials and functions:
 - Supplemental Radiation Protection Technician Task List
 - Training materials including task qualification tools using the EPRI STE or similar process
 - Establish an industry process description for supplemental RP technician program
 - Establish the periodic industry oversight committee

Portable SRPT Quals

- Develop the common industry Procedures and Processes for the following:
 - Postings NISP RP–02 (Drafted)
 - Radiological Surveys NISP–RP–03 (Drafted)
 - Airborne Surveys NISP RP–04 (Drafted)
 - Alpha Surveys
 - Access Control NISP–RP–06 (Drafted)
 - Job Coverage NISP–RP–07 (Drafted)
 - Common Glossary –
 - Free Release Process
 - Personnel Contamination Monitoring NISP-RP-09 (Drafted)
 - Radiography NISP–RP–10 (Drafted)

Portable SRPT Quals – Site Actions

- Station RPMs to revise procedures to implement the common industry procedures and processes
- Implement ANSI 3.1, 2014
- Each site to develop a specific change management plan based on the changes required at the station or utility
- Station communications to site personnel on the change

Portable SRPT Quals – Guiderails

- A periodic review of the vendor training program will be conducted, similar to a NUPIC audit
- An industry oversight committee meeting will be conducted periodically and at least annually to review outage performance and make recommended changes to the training programs
- Station observation of SRPT performance

Questions?