How to correctly choose the list of relevant radionuclides to assess dose uptake by workers? ISOE 2016 – 01 June 2016

Restric

Public

Chapter 4

CONTENTS

Chapter 1

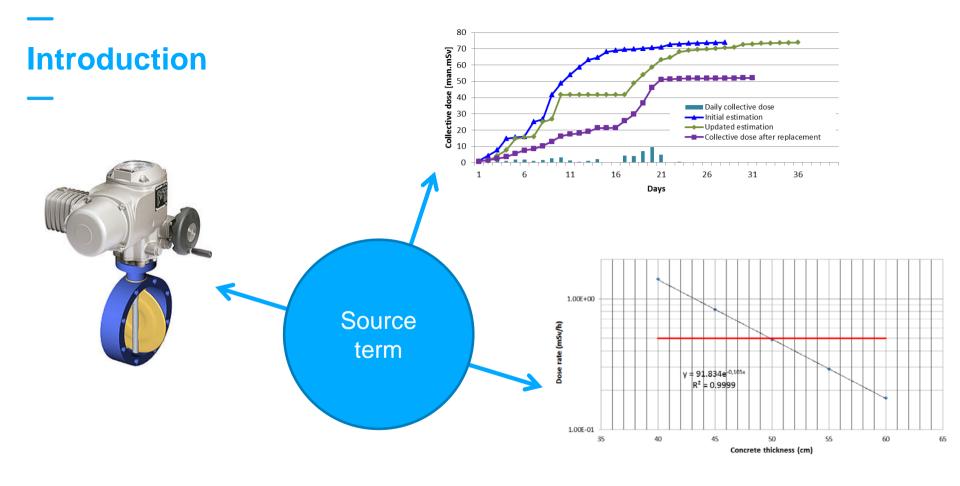
Chapter 2

Chapter 3

Introduction

Methodology

- Screening 1
- Screening 2
- Screening 3


Applications

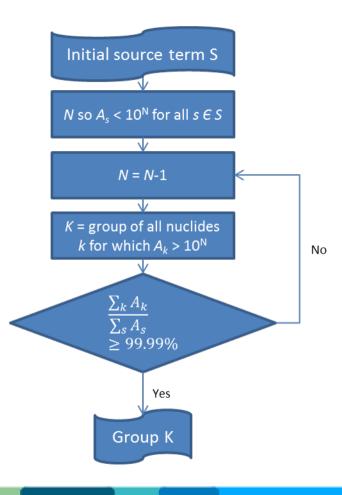
- Containment Filtered Venting System
- Emergency Operation Facility

Conclusions

Introduction The source term

- Needed for dose uptake/integrated dose/dose rate calculations
- Activity level for a list of radionuclides
- Not known for post-accident assessment
- Not known at design stage
- May include more than 1000 radionuclides
 - \rightarrow Need to reduce to a manageable number
 - \rightarrow Tractebel developed a suitable and reproducible methodology

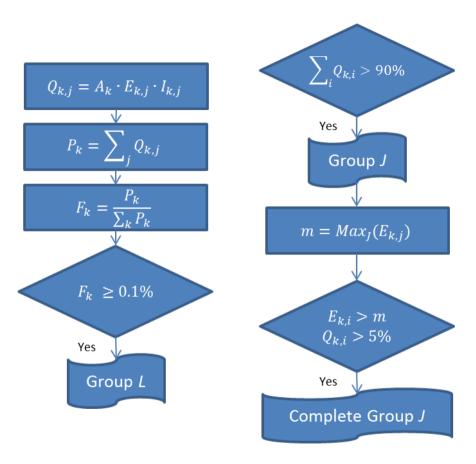
RN	Activity (Bq)
I-131	5.7E+07
I-133	7.6E+07
I-135	5.7E+07
Kr-85	1.0E+08
Xe-133	6.9E+07



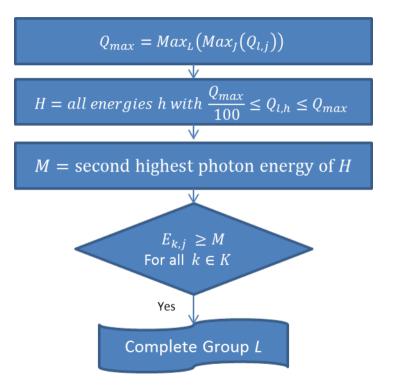
Methodology Description

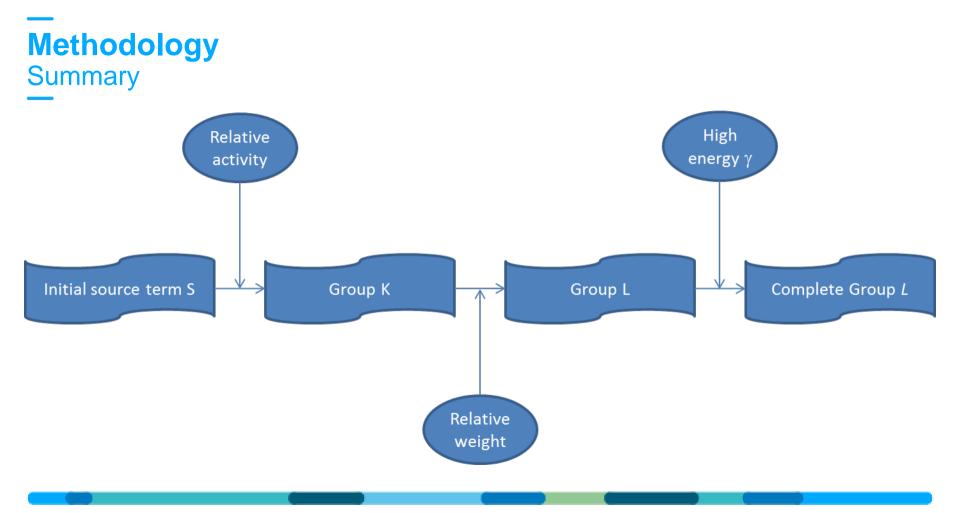
- Three screening steps
 - Activity levels
 - Gamma ray energies contribution
 - Influence of higher gamma rays
- Some data needed
 - Gamma lines for each radionuclide obtained after the first screening
 - Branching factor for each gamma line
 - → from relevant libraries (ICRP-107, JANIS...)

Methodology Screening 1


- Based on the relative activity of radionuclides
- Only radionuclides with sufficiently high activities contribute to the dose uptake/dose rate
- Based on the order of activity magnitude
- Activity : generic term
 - Absolute activity (Bq)
 - Volume activity (Bq/m³)
 - Mass activity (Bq/g)

. . .


Methodology Screening 2


- Based on the relative weight of radionuclides
- Weight P_k : contribution to the dose rate without shielding
- Selection of energies for each radionuclide
 - Most impacting ones (at least 90% of the cumulated energy weight) → Group J
 - Energies with energy weight > 5% if higher than the highest energy of Group J

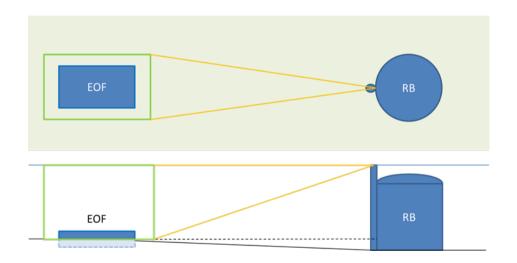
Methodology Screening 3

- Importance of high gamma ray energy
- Q_{1,j}: Energy weight for energy line *j* of radionuclide *I* (as defined before)
- Add neglected radionuclides with relatively high energy gamma rays
 - → Might be relevant in case of shielding layers which could affect the relative weight of isotopes

Applications Containment Filtered Venting System (CFVS)

- CFVS to be installed in all Belgian NPP units
 - \rightarrow To reduce the pressure in the reactor building in post-accident conditions
- Gallery for the venting line between Reactor Building and CFVS
- Manual intervention in the gallery
 - \rightarrow Study to size concrete shielding to limit the dose to the workers (ALARA)
- Initial source term
 - Conservative accident source term computed by severe accident modelling codes MELCOR and IODE
 - 1038 radionuclides for 8 venting periods
 - Activity levels in Bq/m³ for each radionuclide

Applications Containment Filtered Venting System (CFVS)


- Screening 1: 60 and 28 radionuclides for Doel and Tihange NPPs, respectively
 - Impact of a smaller order of magnitude (*N-1*): dose rate increase of 0.018% (Tihange NPP case)
- Screening 2: 23 and 15 radionuclides for Doel and Tihange NPPs, respectively
- Screening 3: No additional radionuclide
 - Impact of the 13 excluded radionuclides (Tihange NPP case): dose rate contribution of 0.7%
- Combination of both sites source terms \rightarrow 31 radionuclides (3%)

Applications Emergency Operating Facility (EOF)

- A new EOF to be built on Tihange NPP site
- Atmospheric contamination as radioactive source to be considered in the vicinity of and inside the building
 - Irradiation through external walls
 - Irradiation from the HVAC filters
 - \rightarrow Potential irradiation of workers
 - \rightarrow Need to design suitable shielding (external + internal walls)

Applications Emergency Operating Facility (EOF)

- Initial source term
 - Output of the filtered vent
 - Uniform dispersion in the volume between Reactor Building and EOF
 - 1038 radionuclides for a 3 minutes integration
 - Activity levels in Bq/m³ for each radionuclide
- Screening 1: 26 radionuclides
- Screening 2: 8 radionuclides
- Screening 3: 3 added \rightarrow 11 radionuclides (1.1%)

Conclusions

- Tractebel has developed a methodology to limit the source term to a manageable number of radionuclides
- No significant influence on the calculated dose (rate) from the screenings
- Conservatism of calculation is kept (if any)
- Otherwise: fairly good results provided + small conservative factor advised
- Con \rightarrow New screening needed when source term evolves
- Pro \rightarrow Methodology applicable for all source terms