Suppression Pool Diving Dose Reductions at Limerick Generating Station

January 2015 Tom Mscisz Exelon Nuclear Limerick Generating Station

Typical Suppression Pool Diving Scope

- Vacuuming (desludging) of underwater surfaces every outage
- Visual and UT inspections of underwater surfaces every other outage
- Debris & condition inspection of ECCS suction strainers
- Spot coating repairs of pitted areas
- Large area preparation and recoating as committed to the NRC for plant life extension
- Removal, inspection, and reinstallation of selected ECCS suction strainers
- Construction and removal of dive and control platforms to support 4 divers (2 per platform)
- Miscellaneous support for setup & demobilization

Diving Exposure History at Limerick

Outage (Year)	Total Dose (Rem)	Average Dose		# Dives	Underwater Filters							D :	
		Per Dive (mRem)			# Filters	Filter Disposal Dose (P-Rem)		Filter Dose Rate (R/hr)		External Filter Usage	Water Level	Dive Platform Type	Work Performed
		Diver	Support	upport	Used	Catwalk	Diver	Average	Max			- 7.5-	
2R10 (2009)	17.118	70	127	56	144	2.8	1.9	7.5	22.6	None	Below Bracing (Low)	Scaffold (Two Platforms)	Full Inspection, 100% Cleaning, Spot Repair
1R13 (2010)	6.305	43	43	35	48	0.7	0.5	7.2	19.2	None	Below Bracing (Low)	Scaffold (One Platform)	50% Cleaning, Minor Spot Repair
2R11 (2011)	No Diving	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	No Diving
1R14 (2012)	12.825	35	43	97	78	1.6	0.9	7.1	16.2	<3 hrs for Polishing Only	Below Bracing (Low)	Scaffold (Two Platforms)	Full Inspection, 100% Cleaning, Spot Repair
2R12 (2013)	5.261	23	15	76	72	1.3	0.6	6.5	12.8	3 Days for Polishing Only	Above Bracing (High)	Two Floating Platforms	Full Inspection, 100% Cleaning, Spot Repair
1R15 (2014)	2.667	9	10	68	0	N/A	N/A	N/A	N/A	9 Days for Polishing and Desludge	Above Bracing (High)	Two Floating Platforms	100% Cleaning, 1D C/S Strainer Removal, Spot Repair, Recoat of 938 ft2

Water Level Effects

- Dose rates with previously submerged structural supports:
 - Contact with surfaces: up to 65 mR/hr
 - Dive platforms 25–45 mR/hr
 - Upper catwalk areas 5-12 mR/hr
 - Requires significant decon of exposed surfaces
 - Power washing using long-handled wands
 - Potential for personnel contamination events
 - Safety concerns

Exposed Support Bracing

High Water Level

- Dose rates with highly contaminated structural supports submerged:
 - Contact with surfaces: up to 6 mR/hr
 - Down from 65 mR/hr
 - Dive platforms 2 4 mR/hr
 - Down from 25-45 mR/hr
 - Catwalk areas 0.5 3 mR/hr
 - Down from 5-12 mR/hr

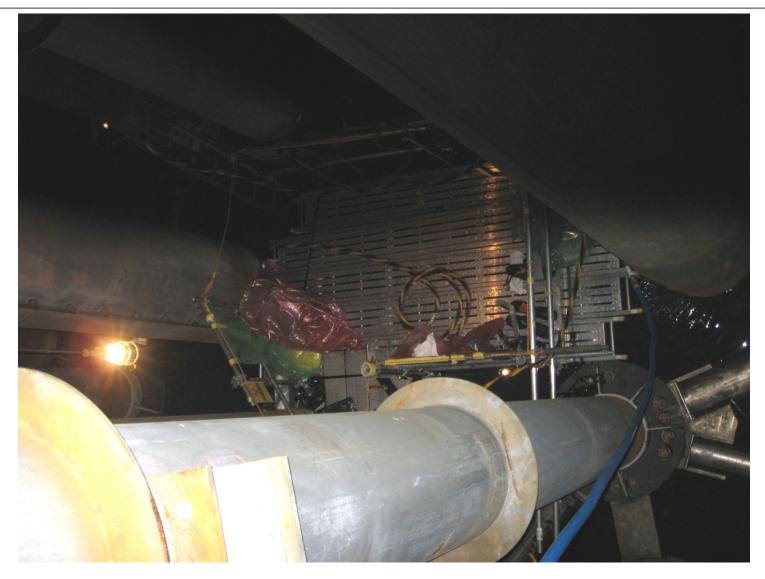
Water Management challenges

- Ensure water level remains stable throughout
- Extra 100,000+ gallons of water in the pool causes storage issues
- Need to lower water level to accept reactor cavity drain down later in the outage
- Contingency actions listed in ALARA Plan in the event of water level changes
 - Raised or lowered level affects ladder position
 - Lowered level causes possibility for platform blocks setting directly on bracing supports

Dive Platform Types

Traditional Scaffold Platforms

- Requires water level to be below the support bracing to accept scaffold poles and decking
- Higher dose rates on previously submerged surfaces
- High contamination levels on bath tub ring requires carpenters to be in full plastic suits
- Requires significant decontamination
- Safety concerns for initial entry below catwalk level
- Foreign material concerns during removal of dive platforms
- Dose for installation and removal: ~1.25 person-Rem

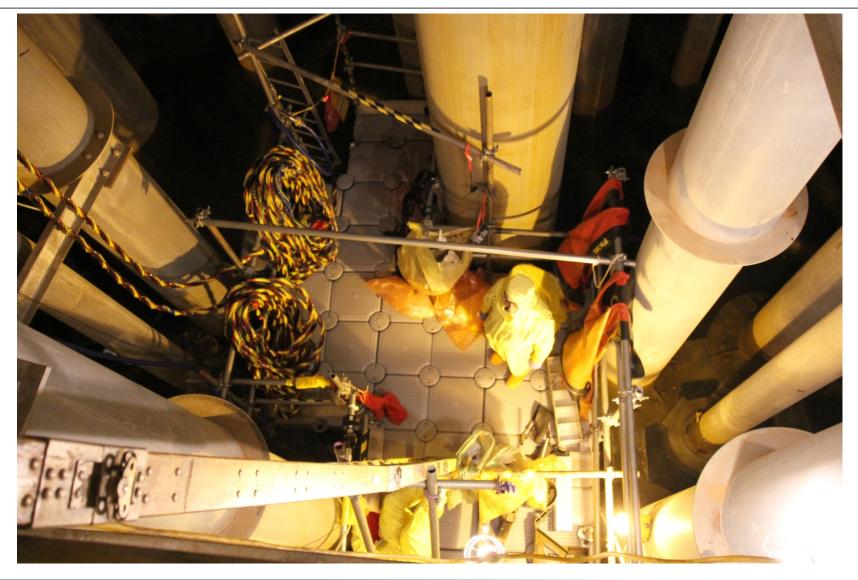


Traditional Scaffold Platforms

Traditional Scaffold Platforms

Floating Platform Material

- Normally used in non-nuclear applications
- Can easily construct platforms to any size or shape
- Single block (20 x 20 x 16; 14 lbs) holds up to 220 lbs
- Double block (40 x 20 x 16; 24 lbs) holds up to 400 lbs
- Blow molded, seamless construction, high impact, puncture resistant high density polyethylene
- Weather, chemical, fire and UV resistant
- No leaching or disintegration
- Non-skid surface, no sharp edges, stable work surface
- Partially pre-assemble scaffold material used for railing and dive ladders
- 2 Platforms purchased for under \$5,000 (blocks and connectors)
- Dose for installation and removal: 0.350 person-Rem



Floating Platforms

Floating Platforms

Floating Platforms (jetfloat.com)

Floating Platform Benefits

- Less workers, time, and dose to construct/remove
- All parts float or can be made to float if dropped
- Mock-ups are recommended and can easily be performed
 - Sections can be pre-assembled then lowered down
 - Needs less than 3 inches of water draft
- Material can be re-used
 - 2013 material disposed of due to high contamination that was not readily removed
 - 2014 material not highly contaminated due to filtration
- Dose for installation & removal ~25% of traditional scaffold

Floating Platform Mock-up

Filtration Types

Suppression Pool Cleanup System

- Permanent plant system
 - •Can only be used during plant operation
 - •Low flow (350 gpm)
 - •Directs water to condenser hotwell
 - •Operational restrictions based on suppression pool water temperature

Underwater Vacuum Filters

Underwater Vacuum Filters

- Significant set-up time required
- One vacuum pump has 8 filters (4 or 8 filters replaced based on manifold differential pressure or dose rates)
- Average filter dose rate 7 R/hr contact (max 22.6 R/hr)
- Divers handle each one individually, transporting to hanging storage location (controlled as locked high rad areas)
- RP/Decon personnel manually transport filters from the suppression pool to shipping cask
 Only 80 filters fit into a cask liner
 Higher dose rate filters put into center of cask
- Dropped filter(s) require additional dive to retrieve
- "Rock catchers" (strainers) remove debris that can damage pumps

External Filter Use in 2014 RFO

- The Diversified Technologies Services (DTS) Solids Collection Filter (SCF[™]) system remained in continuous operation for 9 days during diving and desludging
- Three separate underwater desludging pumps connected to 2" cam-lock connections on the DTS designed submersible pump suction shroud (3 open ports for water polishing)
- Submersible pump maintained > 500 gpm even when filters were loaded from suppression pool desludging work
- System d/P was maintained <35 psid by shutting down the transfer pump for short periods (less than 20 minutes every 4-5 hours)
- Total throughput was 5,586,000 gallons by totalizer readings
- Water clarity maintained > 3 feet with as much as 12-18' visibility

External Filter Use in 2014 RFO

- Used 2 micron filtration media
- Spare filter on site but not needed
- 6" Piping/hoses with cam-lock fittings to/from filter
- Inlet hose shielded (max 7 mR/hr contact below shield)
- Reduced water activity led to lower contamination levels on platform sections and diver umbilical cords
- The single SCF replaced the need for up to 80 underwater vacuum filters during desludging
- Remote radiation monitors placed at top and side of cask to monitor for high rad areas and shipping restrictions

Diversified Technologies Services SCFTM Filter 24

Diversified Technologies Services SCFTM Filter 25

External Filter Shielding

Potential Enhancements

- Install dive control stations outside of suppression pool
 - Easier construction in radiologically "clean" area
 - Can be constructed and outfitted before suppression pool opened
 - Gets divers in water faster once floating platforms installed and outfitted
- Construct only one (larger) dive platform that can handle up to 4 divers
- Potential for charcoal filter to reduce TOC leached from coating material
- Do not drain reactor cavity water to suppression pool
- Evaluate mod for permanent dive platforms

Contact Information:

Tom Mscisz 610-718-2241 thomas.mscisz@exeloncorp.com

Exelon Nuclear Limerick Generating Station 3146 Sanatoga Road Pottstown, PA 19464

