

Primary System Decontamination of the German PWR Grafenrheinfeld – Process Application and Recontamination Experience

B. Stellwag¹⁾, S. Schütz²⁾, A. Jacob²⁾, C. Stiepani¹⁾, C. Topf¹⁾

1) AREVA NP GmbH, Erlangen, germany

2) E.ON Kernkraft GmbH, Kernkraftwerk Grafenrheinfeld, Germany

ISOE Symposium 20-22 June 2012, Prague, Czech Republic

- CRE trends and dose build up in LWRs
- Dose reduction concept with FSD
 - Application examples for FSD
 - Proven technologies
 - Example for FSD in BWR
- FSD in German PWR Grafenrheinfeld in 2010
 - Performance
 - Results
- Recontamination Expereince after FSD
- Summary

CRE Distribution in European LWRs

Base for Dose Reduction Plans ALARA Principle

ISOE Conference 2012 Prague - Primary System Decontamination - p.5

All rights are reserved, see liability notice.

Why dose reduction? - Countermeasures

- ALARA Principle
- Requirements of regulatory bodies
- CRE as Performance Indicator
- Countermeasures Dose Reduction Plan
 - Reactor coolant chemistry
 - Optimization of start up and shut down procedures
 - Outage optimization
 - Task optimization
 - Specialist operating personnel
 - Manipulator technology
 - Installation of permanent shielding
 - Decontamination for local dose reduction to perform task

Example for Collective Dose Exposure Savings (Customer Data)

BR3 Mol (PWR)	FSD (Decommissioning)	7500 mSv	
VAK Kahl (BWR)	FSD (Decommissioning)	2200 mSv	
Oskarshamn 1 (BWR)	FSD (CRDs repair)	20000 mSv	
Japan (BWR)	5 FSDs (core shroud replacement)	up to 140000 mSv	
Conneticut Yankee	FSD (Decommissioning)	> 10000 mSv	
Leibstadt (BWR)	decon recirc pumps	1200 mSv	
Biblis (PWR)	decon volume control system	900 mSv	
Grafenrheinfeld (PWR)	ESD (suistainable dose reduction) > $\sim 4900 \text{ mSv}^*$)		

*) preliminary estimates for savings for outage direct after FSD and after 1 cycle

Driver for FSD

Dose reduction plans implemented

- Countermeasures successful
 - Material concept
 - Coolant chemistry
 - high optimization grade
 - Effect on dose reduction over years

Outage planning

- high optimization grade
- Permanent shielding problem with loads on structure

Chemical decontamination

- Approved procedure for local dose reduction
- Low Recontamination during next operation cycles

Achieved levels of CRE can be further significant and fast decreased:

Concept for fast and sustainable dose reduction with FSD

Concept for Sustainable Dose Reduction based on Proven Technologies

HP/CORD[®] UV

HP/CORD UV und AMDA Proven and Reliable Decontamination Technology

USA

1998: 1 FSD for Decommissioning

Conzept is based on proven technologies

HP/CORD UV

- References
- High material compatibility
- Low waste generation

AMDA

- Proofen and reliable since 30 years
- 🔶 FSD
 - References since 1991 for decommissioning
 - References since 1994 for operation without negative experiences for following operating cycles
 - High system integrity

Protective layer build up

New builds and for SG replacement

Zinc-Injection

Worldwide references (Angra 2; PWR and BWR)

1991-2008: 7 FSDs for Decommissioning 1994-2011: 3 FSDs for operating NPPs

FSD in operating NPPs

in all major NPP designs

FSD prior to decommissioning

Since 1976 > 500 decontaminations pumps and system decontamination

World wide FSD references for BWR, PWR und PHWR

Japan 1998-2011: 5 FSDs in BWR

Application Fields for FSD

- Sustainable Dose reduction if personnel exposure is above defined levels (INPO / WANO levels)
- Sustainable dose reduction as part of life time extension program and/or power upgrade
- Dose reduction prior to major refurbishment activities
- Dose reduction prior to SG-replacement
 - SG with low dose for dismantling activities
 - Less effort for Health Physics and Shielding
 - Low effort for component final disposal storage or recycling
 - Double win:
 - SG replacement easier with low dose rates
 - Start up phase for protection
 - Sustainable dose reduction
- Dose reduction for core internal replacement

In combination with material concept removal of activity inventory

Low sustainable dose after FSD

HP/CORD UV – Main Figures

- Soft Decontamination process with high material compatibility
- Worldwide references in all major designs NPP-System High Dose-R
 - > 500 decontaminations since 1976
- Reproducible high Decon Factors
- Multi-step, multi-cycle process
- No CMR chemicals
- Regenerative process
 - Activity inventory and corrosion products put on ion exchange resins
- Low waste generation
 - Decon solvent oxalic acid is decomposed to CO₂ and H₂O

World wide decontamination applications

Often asked Questions – Oppositions against FSD CORD Family

References?	>500 Decontaminations since 1976		
	18 FSDs (8 for operating NPPs)		
Reproducibility?	proven; detailed information available		
Material damages?	Qualified processes high material compatibility verified by independent agencies		
	and verified by long term operation after decontamination without negaitve effects (references)		
Residues of decon chemcials?	Continuous by-pass purification and UV decomposition step during decontamination Flushing program for dead ends		
Reliability of process engineering?	Proven NPP system engineering and AMDA technology		
Radioactive waste?	Minimum waste by dissolution of oxides secondary waste of decon chemicals minimized by UV decomposition step		
Recontamination?	As lower as bigger the decon area and the removed activity inventory		
NPP integrity after re-start?	Proven by material compatibility evaluation and field experience (references): NPP OKG 1 and Loviisa 2 as also the 4 Japan BWRs are in operation without problems; latest reference FSD in German PWR Grafenrheinfeld in 2010		

Proven Technology FSD OKG 1, 1994

2,3 E12 Bq Aktivity and 30kg corrosion products removed IX-resin waste: 2,5 m³ Man-Rem Savings: 20000 mSv (customer data) DF 20 until > 1000; DRF > 10 Dose rate RPV bottom after FSD: 20 μ Svh Smearable contamination < 4 Bq/cm²

RPV Inspection after Decontamination

Proven Technology 5 FSDs in Japanese BWR for Core Shroud Replacement Reproducible Results

2 FSDs were planned for 2012 – due to Fukushima cancelled or postponed

	1997	1998	2000	2001	2011
Activity release	1.03 E13 Bq	9.98 E12 Bq	7.55 E12 Bq	8.32 E12 Bq	8.34 E12 Bq
DF RPV bottom	43	108	35	60	42
DF Recirc	46	68	83	88	37
DF Nuclide specific	72	308	435	196	
DF RHR/CUW (C-Steel)		—	28	13	7 (hot spots)

IX-resin waste between 4 und 5 m³, depending on decon area

Proven Technology FSD Obrigheim - Excellent Dose Reduction Values

ISOE Conference 2012 Prague - Primary System Decontamination - p.16

All rights are reserved, see liability notice.

Proven Technology Zinc Injection – Effective Dose Reduction

Angra 2 Zn Injection before 1st criticality low dose rates on level as Konvoi with low stellites

Zn injection in operating NPPs (German PWR as example

ISOE Conference 2012 Prague - Primary System Decontamination - p.17

NPP Grafenrheinfeld

- PWR, 4-Loop
- Net Power: 1345 MWe
- NSSS supplier: Siemens KWU
- Start commercial operation: 1982
- Coolant chemistry:
 - Modified chemistry (B/Li)
 - in 2004 start of Zn-injection

copyright@E.ON NPP Grafenrheinfeld

FSD Grafenrheinfeld Motivation and Targets of E.ON

ALARA Principle

- Further improvement of dose rate situation for operation and outage personnel
- Dose savings estimation / target for 2010 to 2014: 5350 mSv expected (= 260 man-year dose)
- Lower dose rates for future refurbishment activities
- achieve dose levels below international standards
- to meet WANO performance indicators
- E.ON to set new technological standard
- improve resource availability, e.g. as for NDE experts

ARE

FSD Grafenrheinfeld Decontamination Concept

Decon process

- HP/CORD UV
- NPP system and AMDA
- Decon Area
 - Primary circuit
 - 3 Residual Heat Removal systems RHR (TH20 – TH30 – TH40)
 - Volume control system (VCS)
 - Coolant clean-up (RWCU)
- RHR system TH10 decon after FSD

Main characteristics:

- Volume: ~ 520 m³
- Surface:
 - ~ 21544 m² (SG tubing I 800)
 - ~ 3700 m² (Stainless steel Austenite)

FSD Grafenrheinfeld Process Engineering – Main Characteristics

- RPV defueled and CRDs removed
- Coolant deborated
- Recirculation
 - Primary circuit: RCPs
 - RHR system: RHR pumps
 - VCS: temp. installed pump
- RCP (hydrostatic sealing)
 - Modification on sealing
 - Temp. installed sealing water supply with demin. Water
- ► Process temperature: up to 95°C
 - Heat up with RCPs
 - Control via RHR coolers
- Process pressure: approx. 22 bar
 - Pressurizer hydraulic full
 - Control via pressure tank in RHR system

- AMDA connection at RHR systems
 - Temporary installed connections with hoses
- AMDA tasks:
 - Chemical injection
 - Mechanical filtration
 - Ion exchange clean up
 - UV-decomposition of decon solvent

FSD Grafenrheinfeld Actual Decontamination Performance

- During decontamination in 1st cycle unexpected high mobilization of corrosion products and activity with following effects
 - Particles with high dose rates transferred in dead ends and areas with low velocity causing higher ambient dose rates
 - Particles easily to remove by flushing
- Chemical decon concept modified during site application
- Modification of planned flushing program for dead ends with higher dose rates in cooperation between E.ON and AREVA

Finally a high decontamination factor was achieved and the operation for new protective layer during start up was performed without problems.

FSD Grafenrheinfeld Dose Rates (before and after FSD) and DF

	Average Dose Rates r			
Area	MP	before	after	DF
	(contractual)	mSv/h	mSv/h	
SG tubing area	16	0.102	0.002	67
Pressurizer, spraylines surgeline	, 12	3.366	0.097	42
Primary loops	16	5.831	0.070	96
RHR system	9	0.627	0.091	17
Volume Control Systen	n 14	8.345	0.381	85
FSD Decon area (primary system and auxiliary s	76 systems)	3.677	0.121	60.5

FSD Grafenrheinfeld

Does Rate Reduction – Distribution in Decon Area

Dose Rate Level Distribution in Decon Area

- For the second second
- > 86% MP lay below 100 µSv/h after FSD
- ~ 60% MP lay below 50 µSv/h after FSD

one MP with dose rates > 3.9 mSv/h after FSD at reg. HX of VCS)

All rights are reserved, see liability notice.

FSD Grafenrheinfeld

Homogenous Decon Results over Different Material Areas

DF over the different main material sections on similar level

FSD Grafenrheinfeld Visual Inspection of Steam Generator after FSD

Metallically clean surfaces

AREVA Water Chemistry Concept for Reduction of Recontamination after FSD

- Passivation treatment of the reactor system in plant operation condition "subcritical hot"
- Time duration: 120 hours
- PH value as high as possible for the specified boron and Li concentrations.
- Areva Li limit for the fuel: 10 ppm Li (no temperature gradients and no heat flux in the core during passivation treatment)
- ► Zinc concentration ≥ 5 ppb
- H₂ concentration at or above the lower limit of the control band specified for power operation
- Start of coolant hydrogenation and Zn and Li additions during heat-up: target is to reach or exceed the recommended values at 260°C
- Other recommendations
 - Use new ion exchange resins
 - High purification flow rate during heat-up and HFT
 - Operate plant during the first three months at constant load (base load operation)

Passivation Treatment at Grafenrheinfeld after FSD

- ► Deoxygenation during heat-up: Criterion as specified for the plant, i.e. O₂ < 0.1 ppm at 170°C.</p>
- ► Hydrogenation start after disconnection of RHR (170°C); target: H₂ > 2 ppm before exceeding T = 260°C.
- Li injection start also at 170° ; target for HFT : L i = 6.3 ± 0.3 ppm.
- ▶ pH(300℃) ~ 7.1 (B > 2200 ppm)
- Zinc injection start also during heatup; concentration 5 15 ppb.
- Time duration of the passivation treatment: planned 120 hours; conducted 200 hours
- Base load operation of the plant during the first three months of the cycle

NPP Grafenrheinfeld Loop dose rate in 1st post FSD outage

FSD Grafenrheinfeld Recontamination on Low level

Dose rate level at main loop piping Values after start of commercial operation and after FSD

- recontamination on expected level
- Dose increase after 1st cycle after FSD much lower compared to 1st operation cycle after commissioning
- Co-58 as main nuclide will support further dose reductions

Gamma-scan resulty

Stellite Inventory of Siemens KWU 4-loop Plant Generations

Areas with Co-Base Alloys

Grafenrheinfeld Surface γ activity values in loop YA 30

Grafenrheinfeld Crud Composition as a Function of the Elevation

FSD Grafenrheinfeld Summary

- Good cooperation between E.ON and AREVA during planning and performance of FSD is key for success of such complex project
- Activity release: 2 E 14 Bq
- Achieved of DF 60.5 (average on 76 MP) corresponds with > 98% removed activity from the primary system and auxiliary systems
- 19.4 m³ resin waste (18.6 m³ planned)
 - Resin waste processing started within FSD performance
 - 7 m³ AIX could be disposed in HICs (Mosaik container) with low shielding
- Special flushing program modified successfully during FSD performance in close cooperation of E.ON & AREVA
- Inspection program performed to ensure functionality of components
- Final clean-up of coolant after FSD performed to meet site requirements for start up
- Protective layer build up performed without problems
- CRE savings:
 - In outage direct after FSD: approx. 3400 mSv
 - In outage after 1st cycle: approx. 1500 mSv
- Recontamination on low level
- Close partnership between E.ON and AREVA for analyzing recontamination effects and also in application of post-FSD measures to support low recontamination

Summary AREVA NP Concept for Sustainable Dose Reduction

Concept is basing on proven technologies

- HP/CORD UV
 - References
 - Material compatibility
 - Low waste volumes

🔶 AMDA

- Proven and reliable technology since more than 30 years
- + FSD
 - Experiences and development for FSDs for decommissioning
 - References for FSDs in operating NPPs without negative experiences during the following cycles (e.g. OKG 1 and Loviisa 2 now > 10 years in operation after FSD)
 - System integrity and functionality of components after FSD

Protective Layer build up

References of new builds and for SG replacement

Zn-Injection (DZO)

References

- Before first criticality: NPP Angra 2
- Implementation after severall cycles: worldwide operating NPPs

66

Any reproduction, alteration or transmission of this document or its content to any third party or its publication, in whole or in part, are specifically prohibited, unless AREVA has provided its prior written consent.

This document and any information it contains shall not be used for any other purpose than the one for which they were provided.

Legal action may be taken against any infringer and/or any person breaching the aforementioned obligations.

Primary System Decontamination of the German PWR Grafenrheinfeld – Process Application and Recontamination Experience

B. Stellwag¹⁾, S. Schütz²⁾, A. Jacob²⁾, C. Stiepani¹⁾, C. Topf¹⁾

1) AREVA NP GmbH, Erlangen, germany

2) E.ON Kernkraft GmbH, Kernkraftwerk Grafenrheinfeld, Germany

ISOE Symposium 20-22 June 2012, Prague, Czech Republic

