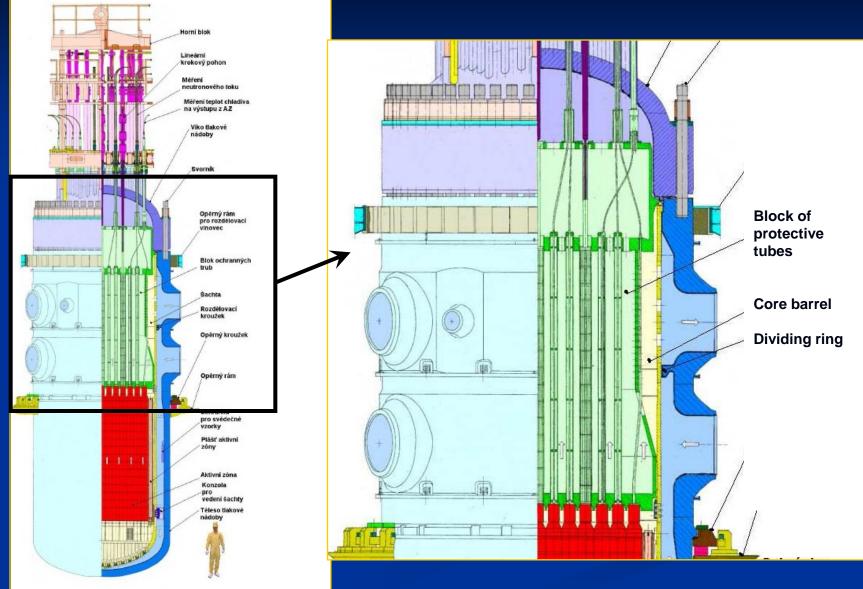
ALARA in Practice Reactor internal parts repair at the Temelín NPP

Milan Hort¹, Josef Koc², Ondřej Kvasnička², Petr Zapletal³

¹ State Office for Nuclear Safety
 ² ČEZ, a. s., Temelín NPP
 ³ ŠKODA JS, a.s.


ALARA in practice

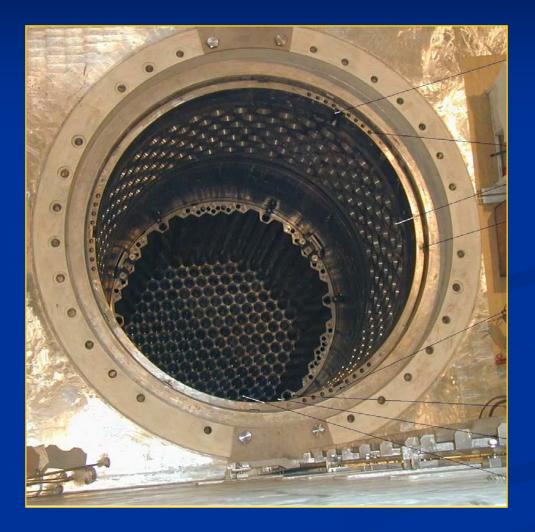
- cause of situation
- situation
- caused activities
- dose optimizationresults

Situation and its cause

- Temelín NPP, Unit 2 refuelling outage 2011
- damage of the reactor inner parts:
- block of protective tubes bottom plate surface
- core barrel inner and outer surface
- reactor vessel dividing ring inner surface
- cause: mutual seizing with foreign objects (stainless steel pin, nut)
- damage: scratches, grooves, pressure marks

Reactor cross section

Transport cavity, inspection wells


Starting point for repairs

- foreign objects removed
- block of protective tubes in inspection well
- fuel removed
- core barrel in inspection well
- reactor and both inspection wells filled with water
- surface damage well known position, remote identification, imprints of scratches
- unknown radiation situation

Works to do

- grinding, burnishing of scratches
- non destructive testing, taking of check imprints
- imprints analyses at the ŠKODA material testing laboratories
- calculations and simulations

Core barrel

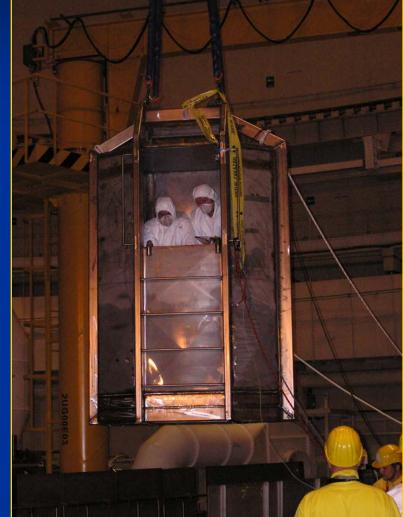
General scenario – preparation

- careful radiation situation analysis
- detailed procedures description chronology of activities, hazards, dosimetry, alarms, …
- documentation R-order, RP ensuring program
- repair drill, test run, monitoring functional test
 pre-job briefing

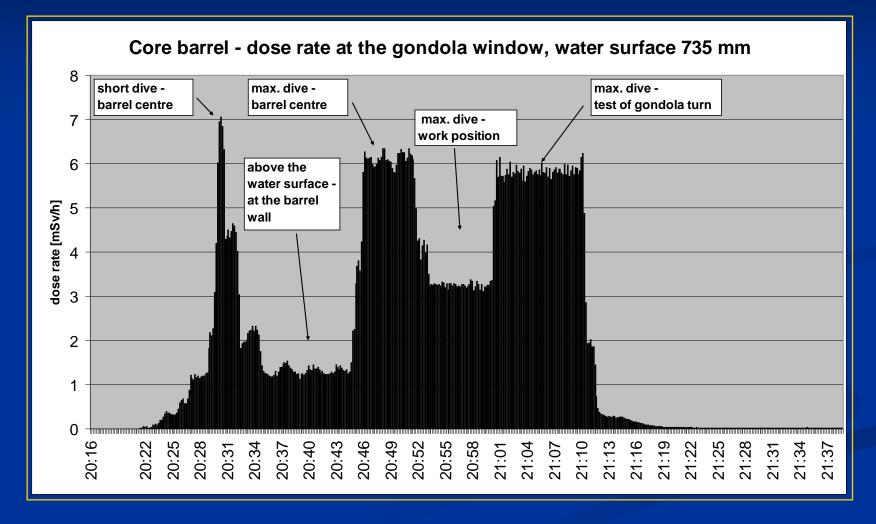
General scenario – repair execution

- general exposure reduction principles: time, distance, shielding
- RP supervision and support
- occupational safety

General scenario – after works


- removing of protective clothing and protective tools
- contamination check
- decontamination of equipment
- evaluation of executed works
- dose assessment
- post-job debriefing

Core barrel repair preparation <u>– inner surface</u>


lead shielded hanging cage (the gondola)
optimization of the gondola trajectory
precise tuning of the water level in the well
careful work preparation – manual works
unoccupied gondola test run with on-line remote radiation monitoring in the gondola

Core barrel repair preparation <u>– inner surface</u>

- the gondola
- mass 7360 kg
- max. load 300 kg
- lead shielding 5 cm
 / 10 cm bottom
- additional shielding
 Radshield plate

Core barrel repair preparation – inner surface

Core barrel repair – planned doses

Activity	Time (min)	Max. dose (mSv)	Number of workers	KED (mSv)
Gondola lowering	10	0,250	6	1,50
Repairs	50	4,000	2	8,00
Gondola pulling up	10	0,250	б	1,50
Gondola relocation	5	0,500	6	3,00
Visual test	2	0,250	2	0,50
Penetration test – app.	15	1,375	2	2,75
Penetration test – eval.	15	1,375	2	2,75
Total	107	$IED_{max} = 5$	2 + 2	20,00

Core barrel repair – inner surface Repair execution

work time reduction – experienced workers shielding – the gondola, Radishield ■ distance – gondola as close as possible to wall ■ work combination: 2 persons (repairer, tester) workers on the gondola bottom during transportation, optimized gondola trajectory occupational safety – emergency extrication, communication, remote dose rate monitoring

Core barrel repair – inner surface

Core barrel repair – inner surface Obtained doses

Activity	Time (min)	Plan. IED (mSv)	Plan. KED (mSv)	Number of workers	IED _{max} (mSv)	KED (mSv)
Repairs incl. transports (all persons)	260	5,0	10,0	9	0,920	1,908
NDT incl. transports (all persons)	240	5,0	10,0	4	1,015	2,218
Total	7:30 – 18:40	5,0	20,0	13	1,015	4,126

Core barrel repair – outer surface

 preparation – dose rate monitoring during core barrel drawing up from the inspection well
 works: manual burnishing of scratches from the transport cavity bottom
 NDT, check imprints

Core barrel repair – outer surface

Core barrel repair – outer surface Obtained doses

Activity	Time (min)	Plan. IED (mSv)	Plan. KED (mSv)	Number of workers	IED _{max} (mSv)	KED (mSv)
Repairs incl. support	60	2,0	5,0	6	0,048	0,189
NDT	30	0,5	1,0	3	0,117	0,194
Total	8:35 – 9:40	2,0	6,0	9	0,117	0,383

Reactor vessel dividing ring – inner surface

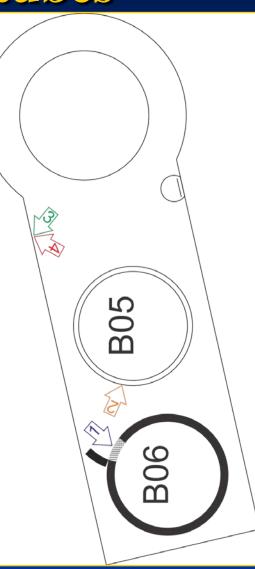
similar to the core barrel inner surface repair
 works: manual burnishing of scratches from the gondola

■ NDT, check imprints

Reactor vessel dividing ring – inner surface

RV dividing ring – inner surface Obtained doses

Activity	Time (min)	Plan. IED (mSv)	Plan. KED (mSv)	Number of workers	IED _{max} (mSv)	KED (mSv)
Repairs incl. transports	70	5,0	8,0	2 / 1	0,094	0,094
NDT	70	5,0	8,0	2 / 1	0,108	0,108
Repairs – support	80	5,0	4,0	5	0,009	0,050
Total	13:40 – 15:00	5,0	20,0	7	0,108	0,252


Block of protective tubes

- severe radiation situation – remote monitoring
- works: remote milling and burnishing of scratches at the bottom plate surface

Block of protective tubes

- dose rate measurement
- 4 top of the ladder 45 mSv/h
- 3 mid of the ladder 87 mSv/h
- 2 core barrel well (150 cm)
 236 mSv/h
- 1 supporting ring window
 244 mSv/h (max 2682 mSv/h)

Block of protective tubes

schematic view of remote repair assembly

Block of protective tubes Obtained doses

Activity	Time (min)	Plan. IED (mSv)	Plan. KED (mSv)	Number of workers	IED _{max} (mSv)	KED (mSv)
Repairs incl. support	480	2,0	8,0	7	0,046	0,134
Indirect NDT	480	1,0	2,0	4	0,004	0,004
Total	1:45 – 10:00	2,0	10,0	11	0,046	0,138

Overview of results

Repair of:	Repair	Total
	KED (mSv)	KED (mSv)
Core barrel	4,5	8,2
RV dividing ring	0,3	3,2
Block of protective tubes	0,1	3,8
Other activities		0,9
Total	4,9	16,1

Total = incl. supporting activities

Thank you for your attention

20 - 22 June 2012, Prague