

Internal Dosimetry: A comparison of bioassay, PAS and noseblow measurements

Richard Bull, Gareth Roberts & Bob Talbot

Health Physics May 2012

Internal Dosimetry for actinides

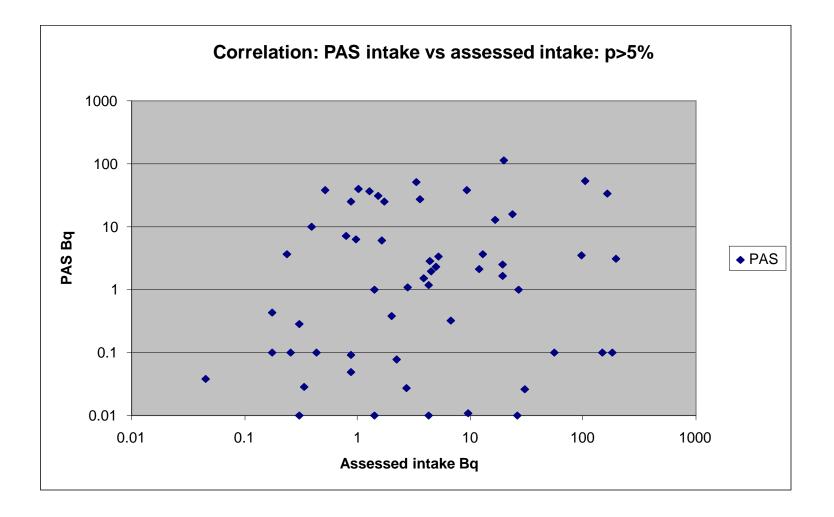
- We are required to measure components of dose of 1 mSv or more
- Bioassay regimes are important—but it is difficult to get down to 1 mSv per year
- Personal air sampling can be used to achieve this limit
- Nose-blows are important in establishing whether intakes have occurred
- How do these various methods compare?

Reliability (sensitivity) of monitoring programmes

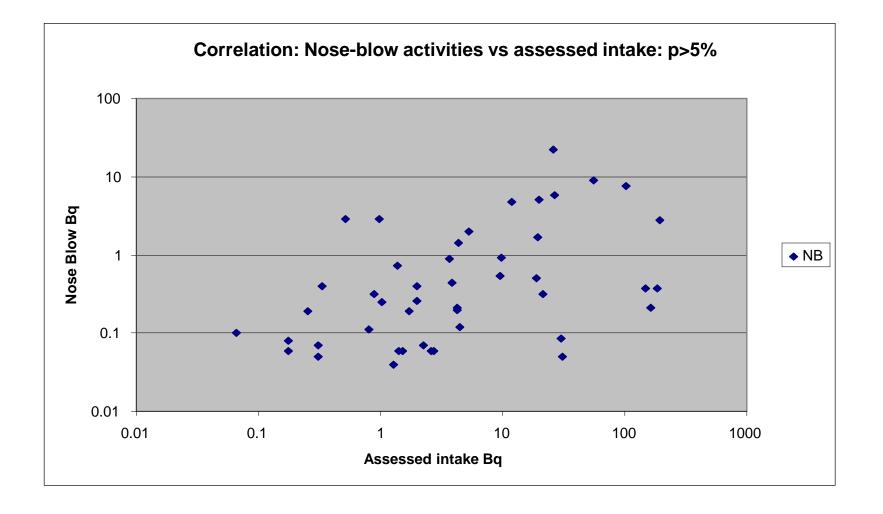
Example: ²³⁹Pu (inhalation; AMAD 5 um; lung type M)

Measurement	Programme	Sensitivity (mSv y⁻¹)	Comment
Lung	annual	2,700	Assumes 1kBq LOD
Urine	annual	1.2	Based on reporting level (0.2 mBq/day)*
Urine	quarterly	1.3	Based on reporting level*
			4 intakes per year
Faeces	annual	3.8	Based on reporting level (2.0 mBq)
PAS	Daily (200 per year)	0.4	or 0.16 mSv if assume samples are from coherent distribution

* The reporting levels ≈ LOD; risk of false positives


Well-defined intake cases

- Provide a means of comparing assessed intakes with PAS & nose-blow
- Fit bioassay results using biokinetic models: vary the mixture of lung solubilities to optimise the fit.
- Select only those cases with p>5%

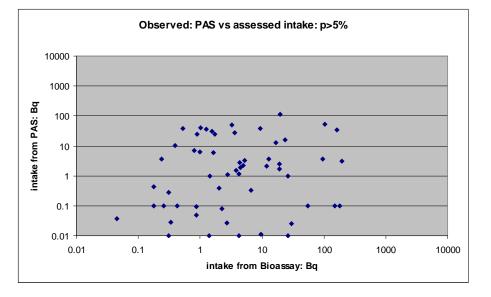


Intakes from PAS vs Intakes assessed from bioassay

Correlations?

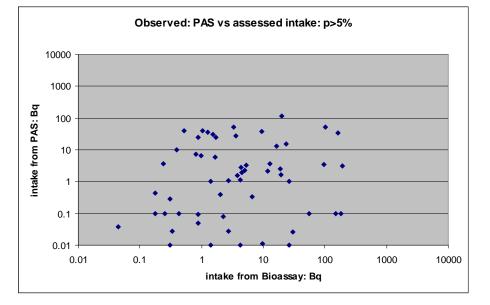
- Visually, it is clear there is little or no correlation
- Calculation of correlation coefficients confirms that there is no correlation between PAS and bioassay
- At best, there is a very weak correlation between nose-blow & bioassay

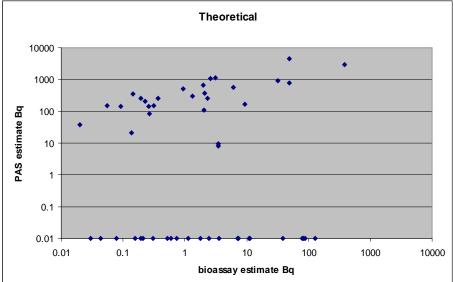
Theoretical approach


- Should we expect to see correlations?
- Select intakes I at random.
- Use conditional probabilities p(PAS|I) & p(Assess|I) to select values of PAS and Assess for a given I.
- Repeat this many times—generate a simulated correlation plot
- Does it look like the real plot?



Simulated correlation: $\sigma g=2.5$; $\sigma bio=2$; corr=0.7


- Simulation produces far better results than we observe BUT:
- For the PAS we have only considered counting stats—there are other sources of uncertainty
- Turbulent dispersion—Bull et al (1987) showed that even when particle numbers are vast (counting stats unimportant) intakes measured via air sampling show a lognormal distribution
- Orientation of the sampling head wrt release
- Can speculate on effects of larger uncertainties



Simulated correlation 2: σg=σbio=4; corr=0.5

Is correlation the whole story?

- Correlations are poor
- However, a survey of 91 intake cases showed that 37 were detected via a PAS result
- Most would not have been detected via the routine bioassay program
- PAS still has an important role in actinide dosimetry!

Conclusions

- The various measures of intake—bioassay, PAS, nose-blow—are poorly correlated
- This is not too surprising, given the uncertainties in each—though more work needs to be done to establish this theoretically
- This does NOT mean that any of these methods should be abandoned
- But we should treat all bioassay and air-sampling measurements with caution!
- Further work is needed to investigate the uncertainties in all monitoring methods for small intakes

