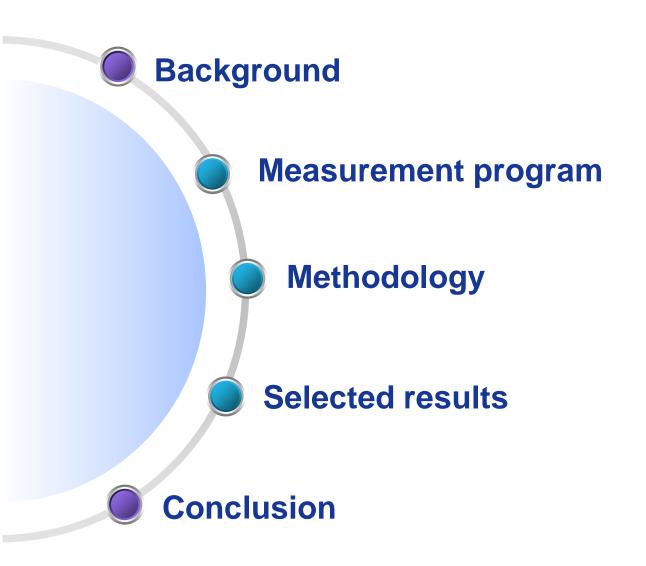


Measurement Program for Occupational Exposure Source Term with in-situ Gamma spectroscopy in China's NPPs

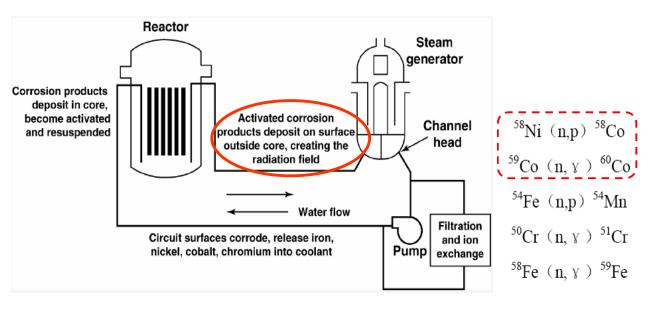

Qinjian Cao, Liye Liu *, Chuan Wang, Hongming Xu, Kongzhao Wang, Zhonghua Li

1 China Institute for Radiation Protection, China 2 CNNC's Nuclear Power Operations Management Co., China 3 JiangSu Nuclear Power Co., China

(Corresponding author: liuliye@cirp.org.cn)


1-3, June 2106

Outline

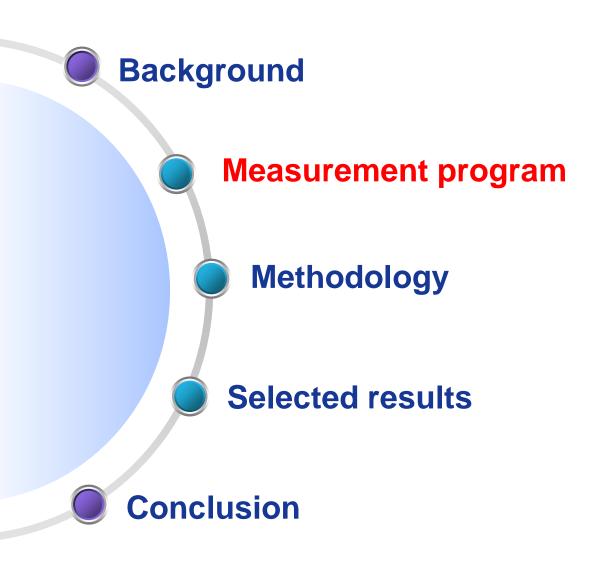

Background

In recent years, China's nuclear power programme is undergoing a major expansion. As of March 2016, China has 33 nuclear reactors operating and 22 under construction.

Background

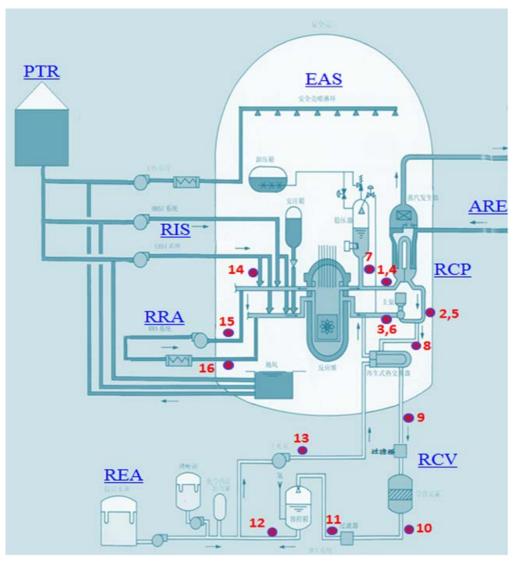
Activated corrosion products, deposited on the surfaces outside core, are the main contributors for external radiation field during the outage of NPPs.
Activited corrosion products

♦ What (radionuclides)?


deposited on the surface

- Where?
- ♦ How much?
- Dose contribution?
- Difference among reactors?

Objective:


- Identification of radionuclides and their specific activities
- Dose contribution for external radiation field

Outline

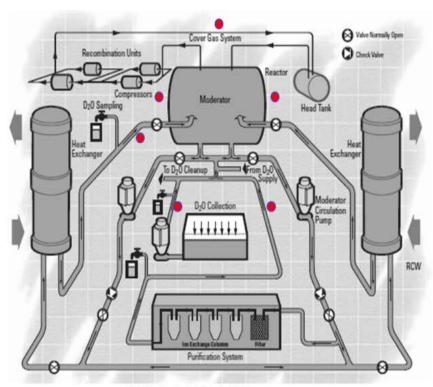
Measurement Program

Measurement locations for PWRs

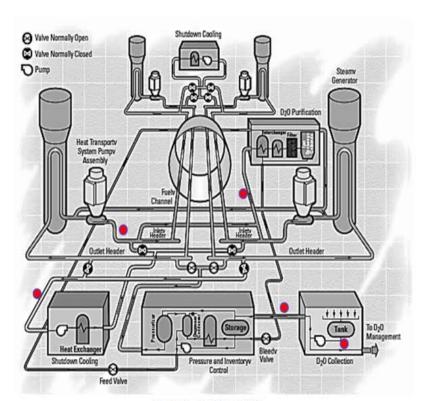
□Program for PWR

➤ Num. of locations: 18~20;

➤ Pipe status: Empty or Full


➤ Mea. Time: After Oxygenation

Survey locations


systems	Locations	priority
	Loop-1, hot-leg	Required
	Loop-1, cross-leg	Required
	Loop-1, Cold-leg	Required
RCS	Loop-2, hot-leg	Required
(RCP)	Loop-2, cross-leg	Required
	Loop-2, Cold-leg	Required
	Stabilizer pipe	Recommended
	up-stream pipe before RHR pump	Recommended
RHRS	Connection pipe between PTR and RRA	Recommended
(RRA)	down-stream pipe after RHR pump	Recommended
	Before regenerative resin	Recommended
	Up-stream pipe before purification bed	Recommended
cvcs	Down-stream pipe after purification bed	Recommended
(RCV)	After regenerative resin	Recommended
(=== 1)	Down-stream pipe of Volume Control Box	Recommended
	Before pump	Recommended
BR\$ (REI	Upstream pipe	Optional

Measurement Program

Measurement location for PHWR

慢化剂及其辅助系统

传热及其辅助系统

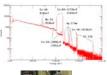
Measurement Program

20 measurement campaigns for 6 NPPs (since 2005)

2015 2014

2012

2010


2007

2005

2004

Fuqing (FQ-101), LingAo(L113) PWR(M310+)
Qinshan-1(Q1-116)

Fanjiashan (QF-101/201) PWR(M310+)

Tianwan (T106/T206)

Qinshan-3 (107/207/108) PHWR(Candu6)

Qinshan-2 (301/302) Qinshan-3 (205)

Tianwan (T104/T203) Qinshan-2 (108/207)

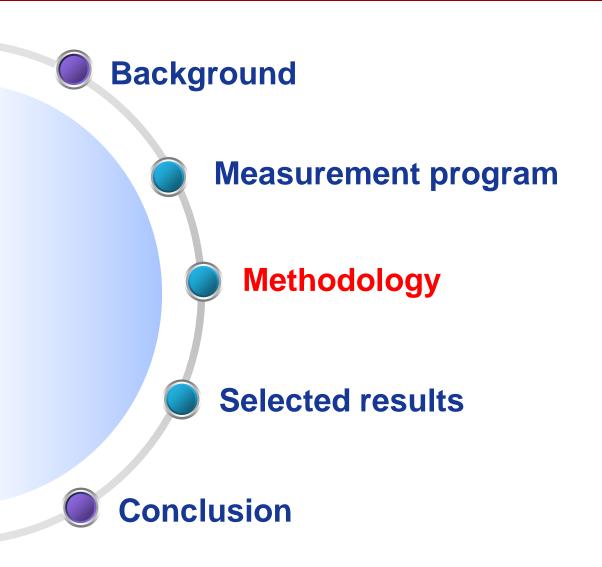
Qinshan-2(105/204) PWR (CNP600)

The first mea. campaign in Qinshan-1 (108)

PWR (CNP300)

PWR (AES-91)

To develop Sterm-HPGe



Outline

Methodology

Since the pipes are still in service for NPPs, in-situ gamma spectroscopy is almost the only available measurement method for radiological characterization of these deposited corrosion products, thanks to its non-destructive advantage.

Approach (gamma spectroscopy + proper data interpretation)

- Gamma spectroscopy
 - to identify radionuclides and their peak counts
 - Sterm-HPGe, Sterm-CZT developed by CIRP.
- Hand-held dosimeter
 - to measure dose-rate (Radiagem-2000).

Data interpretation:

- To calculate detection efficiency by using numerical calibration technique
- To analyze dose-rate contribution by using Monte Carlo (MC) calculation

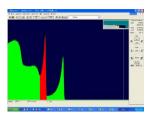
It consists of HPGe/CZT detectors, collimator, MCA, vehicle.

Sterm-HPGe

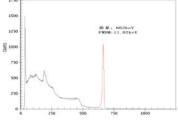
(GEM30P4, 2004)

(GEM30P4, GX1020, 2011)

Sterm-CZT

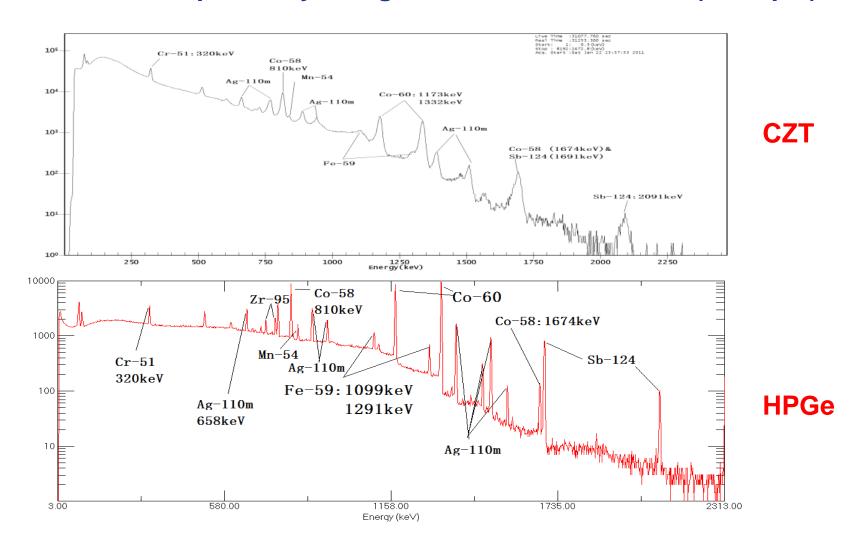


(CZT-500s,2005)



(CPG-CZT, 2011)

- ➤ Low resolution
- incomplete charge collection (left-tail peak)



- > Improved resolution
- ➤ No left-tail
- Larger size

Table 1. Performance indicators of Sterm-HPGe and Sterm-CZT

Main performance	Sterm-HPGe	Sterm-CZT		
Detector	HPGe	CZT		
Relative Efficiency	33%(GEM30P4, 2004) 10%(GX1020, 2011)	CZT500s (Ritec, 2005) 0.13%(eV CPG-CZT,10×10×10mm³, 2011)		
Energy range	60keV-3MeV, 3keV-10MeV	60keV-2MeV		
Energy resolution	1.3keV@662keV (good)	12keV@662keV (moderate)		
Measurable dose-rate	1μSv/h-200μSv/h (low)	10μSv/h-15mSv/h (higher)		
Other performance				
Radionuclide identify	All radionuclides can be identified	Almost all interest-radionuclides in NPPs		
Typical Mea. time	~10 Mins.	0.5-3 hours		
Typical MDA	10 Bq/cm ²	100 Bq/cm ²		
Weight (including collimator)	40kg (Heavy)	15kg (Light)		
Accessibility	Poor	Flexible		
Work requirement	LN2 Cooling	-		

Measured spectra by using Sterm-CZT and –HPGe (example)

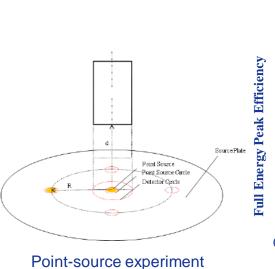
Although Sterm-CZT has limited energy resolution, it is more suitable to be used in narrow space or high radiation field than Sterm-HPGe.

Narrow space

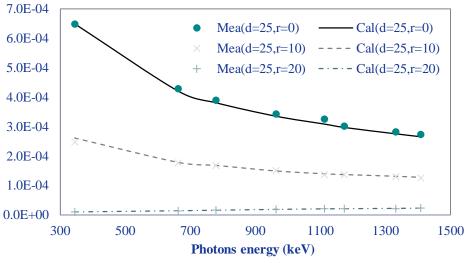
High radiation field

Numerical efficiency calibration

- Full-energy peak detection efficiency is the key parameter for accurate measurement of radioactivity by using in-situ gamma spectroscopy.
- A so-called Sterm-MC software has been developed for numerical calibration purpose, combined with proper variance reduction technique to speed up the calculation.

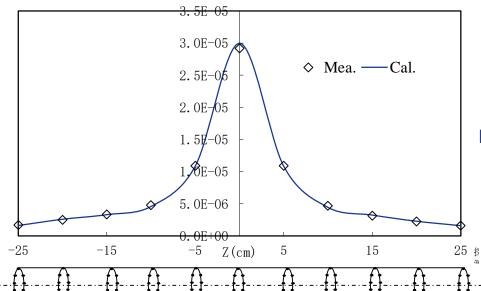

Table 2. Comparisons of two calibration methods

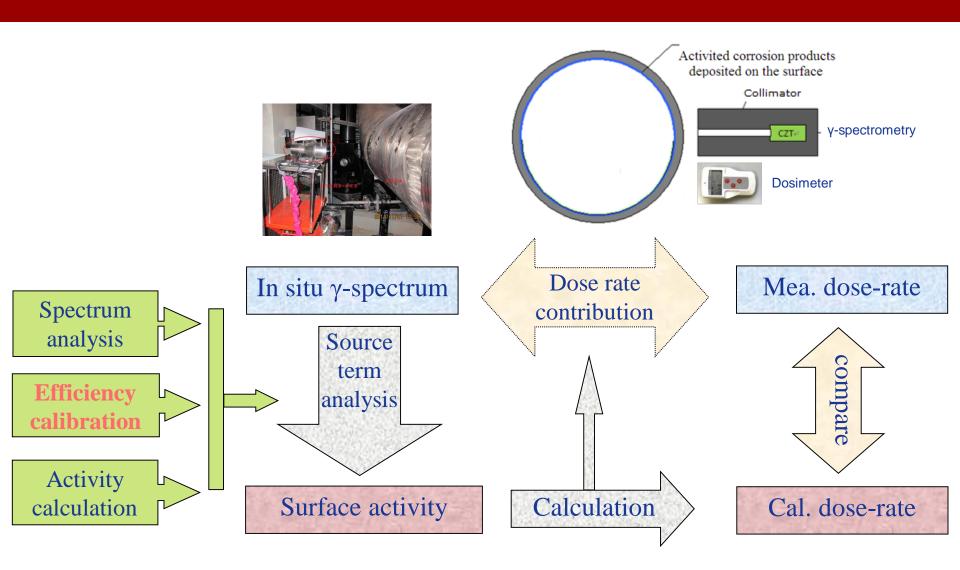
	Experimental calibration	Numerical calibration
Time	Time-consuming	Fast
Cost	Expensive	Cheap
Geometry	Limited geometry	More flexible
Others	Radiation exposure	Experimental validation needed

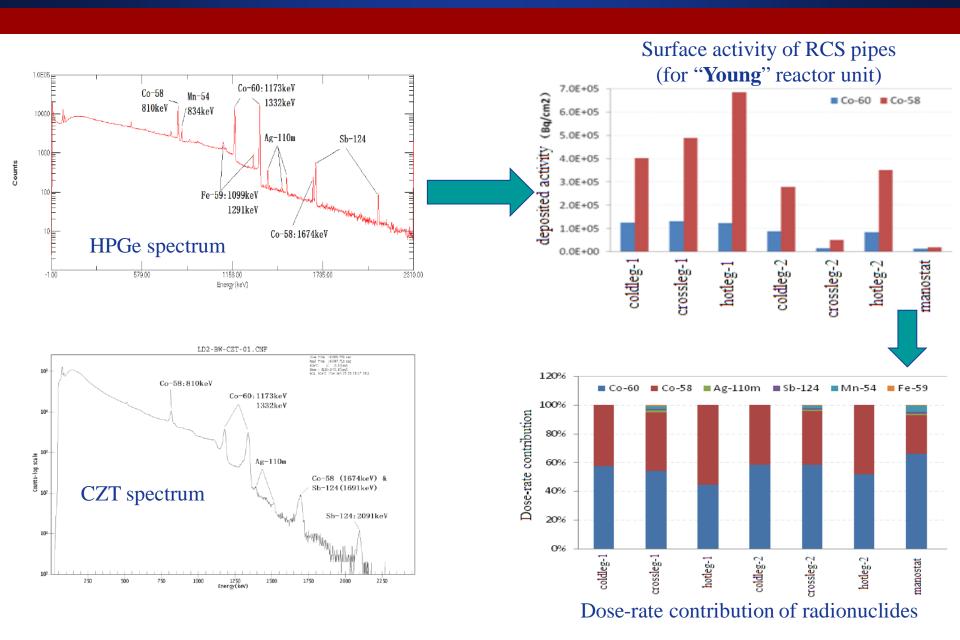


Sterm-MC (based on Monte Carlo method)

Numerical efficiency calibration

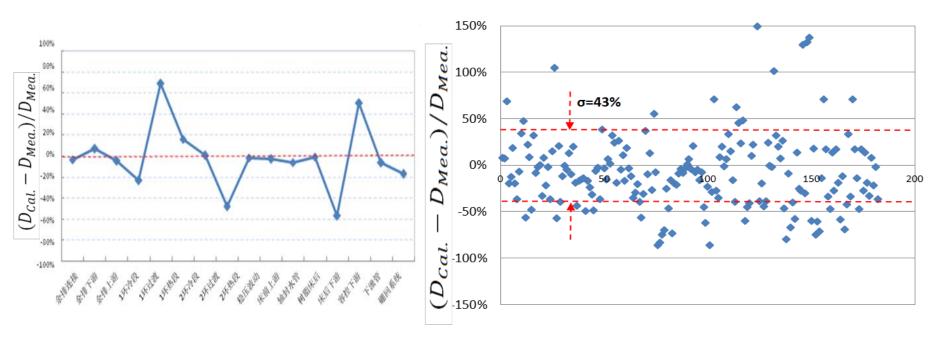

Experimental validation


Relative deviation: $\pm 10\%$.


simulated surface source experiments

Relative deviation: $\pm 15\%$.

Data analysis framework of in-situ radiological characterization


Measured source term between Sterm-CZT and -HPGe

isotope	energy (keV)	activity (Bq/cm²)	Ave. activity (Bq/cm²)	Dose-rate contribution	Cal. Dose rate(μSv/h)	Measured dose rate $(\mu Sv/h)$	
⁶⁰ Co	1173.2 1332.5	1.79E+04 1.37E+04	1.58E+04	80%	31	48.4	CZT
⁵⁸ Co	810.8	1.98E+04	1.98E+04	20%	20%		_
isotope	energy (keV)	activity (Bq/cm²)	Ave. activity (Bq/cm²)	Dose contribution	Cal. Dose rate(µSv/h)	Measured dose rate (μSv/h)	_
⁶⁰ Co	1173.2 1332.5	1.81E+04 1.64E+04	1.72E+04	67%			
⁵⁸ Co	1674 810.8	3.35E+04 2.40E+04	2.88E+04	23%	-		
^{110m} Ag	1505 1384.3	1.76E+03 1.86E+03	1.81E+03	5%	40	48.4	HPGe
¹²⁴ Sb	1691	2.98E+02	2.98E+02	1%	-		
⁵⁹ Fe	1291.6 1099.25	9.58E+02 1.07E+03	1.01E+03	2%			
⁵⁴ Mn	834.83	2.96E+03	2.96E+03	2%	-		_

The differences of measured activity between Sterm-CZT and –HPGe are usually less than 30% for key radionuclides (e.g. Co-60, Co-58).

Uncertainty estimation

- The overall on-site measurement uncertainty induced from different inputfactors, such as detector's position/efficiency/spectrum analysis, is estimated as ~50% for key radionuclides.
- The standard relative deviation between calculated dose-rate and measured one is 43% based on a large number of measurement pipes (~190), which is accordance with the above estimated uncertainty (~50%)

Outline

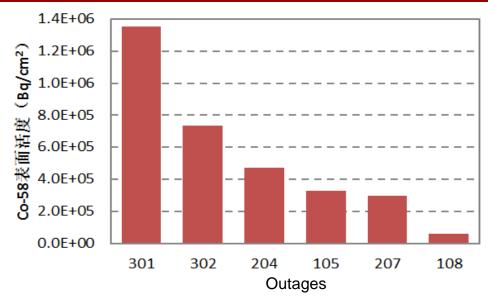
Radionuclides

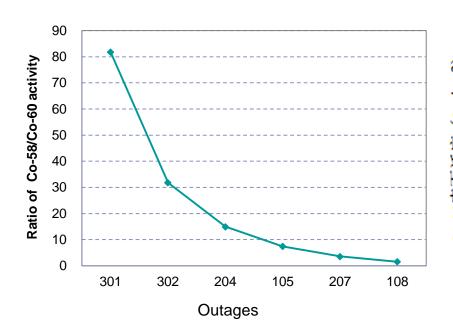
□ Almost all of the corrosion products indicated in ISOE report has been observed in QinShan-II NPP, except Fe-55 and Mn-56 for which the photons energy is too low or the half-life is too short.

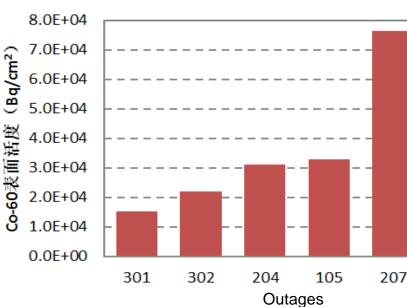
Main contributors of Qinshan-II

Main radionuclides	Co-60、Co-58、Ag-110 ^m 、Fe-59、Mn-54、 Zr-95、Zn-65、Nb-95、Cr-51、Sb-124
RCS (RCP)	Co-60、Co-58
RHRS(RRA)	Co-60、Co-58、Ag-110 ^m (later phase)
CVCS (RCV)	Co-60、Co-58、Ag-110 ^m (later phase)
BRS (REP)	Co-60、Co-58、Ag-110 ^m (later phase)

Compared with ISOE report

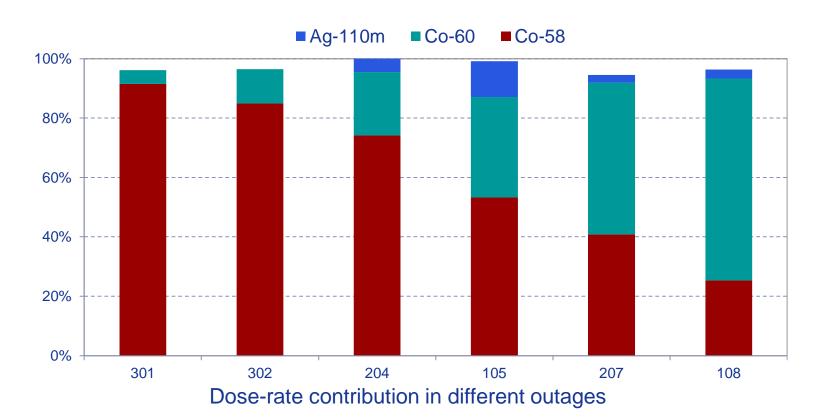

Radionuclide	Half Life	Activation Reaction	Major Source
⁵¹ Cr	27.702 days	$^{50}\mathrm{Cr}\left(\mathbf{n},\gamma\right) ^{51}\mathrm{Cr}$	Stainless steel and nickel based alloy
⁵⁴ Mn	312.1 days	⁵⁴ Fe (n,p) ⁵⁴ Mn	Stainless steel and nickel based alloy
⁵⁵ Fe	2.73 years	⁵⁴ Fe (n, γ) ⁵⁵ Fe	Stainless steel and nickel based alloy
⁵⁶ Mn	2.578 hours	⁵⁵ Mn (n, γ) ⁵⁶ Mn	Stainless steel and nickel based alloy
⁵⁸ Co	70.88 days	⁵⁸ Ni (n,p) ⁵⁸ Co	Nickel alloys
⁵⁹ Fe	44.51 days	58 Fe (n, γ) 59 Fe	Stainless steel and nickel based alloy
⁶⁰ Co	5.271 years	⁵⁹ Co (n ,γ) ⁶⁰ Co	Stellite TM and cobalt bearing components
⁶⁵ Zn	243.8 days	⁶⁴ Zn (n, γ) ⁶⁵ Zn	Natural zinc injection
⁹⁵ Nb	34.97 days	⁹⁵ Zr decay	Fuel cladding (Zircaloy, Zirlo TM , etc.)
⁹⁵ Zr	64.02 days	$^{94}\mathrm{Zr}$ (n, γ) $^{95}\mathrm{Zr}$	Fuel cladding (Zircaloy, Zirlo TM , etc.)
$^{110\mathrm{m}}\mathrm{Ag}$	249.8 days	$^{109}\mathrm{Ag}\ (\mathrm{n},\gamma)$ $^{110\mathrm{m}}\mathrm{Ag}$	Silver-Indium-Cadium Control rod wear, Helicoflex $^{\rm TM}$ seals
¹²⁴ Sb	60.20 days	$^{123}{ m Sb}~({ m n},\gamma)^{124}{ m Sb}$	Secondary start-up source, RCP bearings, impurities


Specific Activity (Bq/cm²)


■ Specific activity of Co-58 and Co-60 changes along with the NPP's operating ages (Qinshan-II).

➤ Co-58: decreasing

Co-60: increasing



108

Dose-rate contribution

- □ Dose-rate contribution of Co-60, Co-58, and Ag-110m in different outages for Qinshan-II.
 - ➤ Co-58: ~90% at 1st outage, then decreases to ~20% at 8th outage.
 - ➤ Co-60: ~5% at 1st outage, then increases to ~70% at 8th outage.
 - > Ag-110m: Major contribution for CVCS at 4th and 5th outages.

Conclusions

- Two in-situ gamma spectroscopy measurement systems, called Sterm-HPGe/CZT, have been developed based on numerical calibration technique.
- Since 2005, twenty measurement campaigns have been carried out for activated-corrosion source term characterization and dose assessment in China's nuclear power plants.
- The specific activity of corrosion products and their dose-rate contribution to external radiation field are analyzed. The measured results can also be used as inputs for future 3D dose simulation research for NPPs.
- More measurement program is now being planned.

谢谢大家!

Thanks for your attention