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Abstract – Performance indicators developed from Weibull distribution analysis of individual workers’ 
radiation doses have been proposed as complementary to current performance indicators for evaluating 
the effectiveness of As Low as Reasonably Achievable (ALARA) implementation at nuclear facilities. 
The Weibull-based indicators provide insights based on objective supplemental information. The 
purpose of this work is to investigate additional topics related to the implementation of this 
methodology. This paper is a follow-on to a paper presented in October 2009 at the ISOE ALARA 
Symposium but contains only new analyses and techniques developed since that time, including 
goodness of fit and the influence of transient workers and experienced workers on site results. A Chi-
squared goodness of fit test and goodness of fit plots based on the hazard function are described, and 
guidelines are proposed for their use. Sensitivity analyses involving the effects of experienced workers 
on Weibull results are presented from both a statistical and a practical perspective. Additional 
applications of the Weibull approach are provided, including the effect on the Weibull distribution of 
accumulating transient workers’ doses from all reactors.  
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1.0  INTRODUCTION 
 
The As Low As Reasonably Achievable (ALARA) radiation safety principle was developed to 
safeguard workers who are occupationally exposed to radiation. It has been adopted by numerous 
international agencies, including the United States Department of Energy (DOE) and Nuclear 
Regulatory Commission (NRC). This principal has two complementary purposes: to reduce the 
collective exposure as low as can be reasonably achieved and to maintain dose to individual workers 
as far below the permissible exposure limits as possible by using all practical, cost-effective methods. 
Traditionally, performance indicators based on collective dose have been employed to evaluate 
ALARA implementation at a site. Recently, supplemental performance indicators based on dose 
distribution among workers receiving dose have been developed to promote the second aspect of the 
ALARA principle. These indicators are based on site-specific Weibull distribution parameter values 
derived by fitting a statistical model to individual doses from the site. The Weibull distribution 
methods are described in detail (Frome et al., 2009). As in the 2009 work, statistical models in this 
study use distributions of annual individual doses above the minimum inclusion threshold (MIT) of 0.1 
mSv, and x is defined as follows: x = [Total Effective Dose Equivalent (TEDE) – MIT].  
 
Whenever statistical models are utilized, the question arises as to how well the data fit the proposed 
model. In the context of model-based performance indicators that may be used to evaluate sites with 
respect to ALARA, the issue of goodness of fit has two distinct facets. These two components are the 
formal evaluation of goodness of fit based on a statistical test and the legitimate use of the 
performance indicators to evaluate ALARA. All statistical analyses and graphs in this report were 
obtained using the R (R Development Core Team, 2010) environment for statistical computing. 
Detailed documentation can be found on the R home page at http://www.r-project.org. 
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2.0  MATERIALS AND METHODS FOR GOODNESS OF FIT 
 
2.1 Formal Assessment of Goodness of Fit 
 
Goodness of fit is commonly evaluated by a Chi-squared test that has a null hypothesis that the data fit 
the specified distribution. The data are separated into k bins, and the test statistic is defined as the sum 
over all bins of the squares of the residuals, i.e. (observed – expected) / sqrt(expected). Because an 
expected frequency of at least five is required for the Chi-squared approximation to be valid, bins are 
combined where necessary to meet this restriction. Because two parameters are estimated in the 
Weibull model, the number of degrees of freedom (df) for the Chi-squared test is k – 2.  
 
For each site, a p-value is determined based on the Chi-squared statistic, X2, and the appropriate 
degrees of freedom. Goodness of fit is assessed independently with a p-value for each site in the group. 
Although for each site there is a 5% chance of erroneously rejecting a Weibull model, this chance 
increases depending upon the number of sites tested. To maintain an overall significance level of at 
most 0.05, each site can be compared with an adjusted critical p-value based on the number of sites in 
the group. Appendix A contains details of the formal goodness of fit assessment, and Table A-1 gives 
the adjusted critical value for 2-100 simultaneous tests Any site having a p-value smaller than the 
critical value is concluded to have statistically significant lack of fit to the Weibull model and requires 
further evaluation. Although consensus has not been reached among statisticians as to the best method 
of adjusting for multiple simultaneous hypothesis tests, there appears to be agreement that adjustment 
is needed (Benjamin and Yekutieli, 2005). 
 
A more conservative approach to determining which sites have statistically significant lack of fit 
would be to select a fixed critical value. A p-value below the fixed critical level would indicate lack of 
fit, and further evaluation of patterns of lack of fit would be required. More details of this approach 
appear in Appendix A.  
  
2.2 Creating Customized Goodness of Fit Plots 
 
One visual indication of how well site data fit a Weibull distribution is how close the points fall to the 
Weibull survival (exceedance) function fit line in the custom probability plots (Frome et al., 2009). To 
provide a complementary perspective, the goodness of fit plots are based on the Weibull hazard 
function (Johnson et al., 2004). The hazard function with shape parameter α and scale parameter β is 
specified as  
 h(x) = α/β [x/β]α –1.       (1) 
 
When α = 1, the Weibull distribution simplifies to a negative exponential distribution, which has a 
constant hazard function (horizontal line). All but a few sites have α < 1, which produces a hazard that 
is monotonically decreasing with increasing dose as the corresponding Weibull hazard line drops from 
upper left to lower right. If α > 1, then the hazard is monotonically increasing with increasing dose. It 
has been noted (Frome et al., 2009) that, as a rule-of-thumb, the value of α should be examined and a 
site should be considered as not effectively implementing ALARA if α > 1. An exception to this rule is 
a site having α > 1, a very small 99th percentile, and a percent exceedance near zero.  
 
In the goodness of fit plots, the Weibull hazard function is represented by a solid green line. To 
construct this line, equation (1) is transformed into the equation of a line (see equation A1 in Appendix 
A). The resulting Weibull line is composed of ordered pairs (ln(vi),ln[h(vi)]) where ln(vi) are natural 
logarithms of the ordered midpoints of the dose intervals (bins) and ln[h(vi)] is given in equation A1. 
The Nelson-Aalen (N-A) hazard estimate for vi is the number of doses in its interval divided by the 
number of doses larger than the lower bound of that interval (Lawless, 2003). The open circles on the 
plot represent ordered pairs where the first coordinate is ln(vi) and the second coordinate is ln(N-A 
estimate for vi).  
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Goodness of fit can be examined visually in these plots by noting whether the open circles fall near the 
green Weibull hazard fit line. To identify intervals with statistically significant lack of fit, any interval 
whose residual has a value greater than two, including intervals with no observed doses, has its open 
circle enclosed in a red diamond. A non-parametric smoother (Friedman, 1984 and Everitt and 
Hothorn, 2010) shown with a solid blue curve, is applied to the points for all intervals. Rising areas of 
this curve indicate that the hazard is increasing faster than the Weibull, which means that doses are 
falling into lower intervals than predicted by the Weibull distribution. When a rising blue curve covers 
dose intervals around values such as 10 mSv, it is possible that administrative criteria were applied to 
pull individuals out of jobs with exposure potential when their dose for the year approached this 
predetermined criterion value. Although such practices may maintain worker health, this approach is 
not optimum for ALARA and could affect the goodness of fit of the site’s doses to any statistical 
distribution. More effective ALARA practices entail actively maintaining each worker’s dose as low 
as reasonably achievable throughout the year, rather than imposing an upper limit for the year. 
 
2.3 Understanding Customized Weibull Plots 
 
In conjunction with the statistical modeling and testing, two types of plots have been developed to 
provide the ability to visually compare distributions over time and/or among sites and to visually 
examine patterns of goodness of fit. Table 1 summarizes important attributes of the customized 
Weibull probability plots and corresponding goodness of fit plots. Examined together, these two plots 
provide much complementary information for assessing the goodness of fit of the site’s dose 
distribution to the Weibull model. 
 
As an example, Figure 1 is the goodness of fit plot for the DOE Hanford site in 2009. The Weibull 
hazard line falls from upper left to lower right, and so α < 1. Results of the formal Chi-squared test 
appearing at the bottom of the plot in green text show a p-value 0.150, indicating there is not statistical 
evidence to reject the null hypothesis (i.e., H0: the Weibull distribution fits these data). Although there 
are several intervals near 1 mSv that have residuals greater than two, as indicated by the red diamonds, 
points generally straddle the line. The blue non-parametric smoother shows that the hazard is 
somewhat below Weibull in higher doses, which is the area of greatest interest. Figure 2 is the 
corresponding probability plot. Probability plots have been described in detail (Frome et al., 2009); 
emphasis here is on their use in examining goodness of fit. Points, by and large, fall quite close to the 
Weibull line with the heaviest concentration between 1 mSv and 5 mSv. Whenever a probability plot 
shows “survival” in a dose range being above-Weibull, the hazard in that range will be below-Weibull. 
This correspondence can be seen at the higher dose end of the goodness of fit plot. In particular, of the 
1,274 doses in the distribution, six values in the probability plot are above 5 mSv and correspond to 
points noticeably above the Weibull fit line. These six dose values are included in the last interval of 
the goodness of fit plot, where points correspond to intervals rather than distinct doses.   
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3.0  RESULTS FOR GOODNESS OF FIT 
 
3.1 Statistical Results 
 
Table 2 and Table 3 show Weibull-based statistical results based on 2009 dose distributions for DOE 
and NRC sites, respectively, where the columns are defined as follows: 
 

α Β 
99th 

percentile 

99th  
percentile 

ucl 
% 

exceedance nx X2 df 

Weibull 
shape  

parameter 

Weibull 
scale 

parameter 
fitted 99th 
percentile 

99th percentile 
upper 

confidence 
limit  

percent 
exceedance* 

Number 
of doses 
> MIT 

Chi-
squared 
statistic  

degrees of 
freedom  

*Percent exceedance is calculated for 2.5 mSv for the DOE sites and 3 mSv for the NRC sites. 
 
 
Table 1: Comparing Attributes of Customized Weibull Probability Plots and Goodness of Fit 
Plots 
 

Attribute Probability Plots Goodness of Fit Plots 

Weibull line   
starting point maximum likelihood site-specific values of α 

and β� from Weibull fit  
maximum likelihood site-specific 
values of α and β from Weibull fit 

derived from S(x) = 1 – F(x): exceedance (also called 
survival) function; -S(x) represented  

h(x): hazard function 

line solid black from upper left to lower right  solid green:  
upper left to lower right if α�< 1 

x-“axis”/ x-axis ln(ui): ui are ordered distinct values of x; 
labels adjusted to doses before MIT 
subtracted; intersects Weibull line at fitted 
99th percentile 

ln(vi): vi are ordered interval midpoints 
of x; labels adjusted to match doses 
with MIT subtracted 

y-axis ln(β)*α - α* ln(ui): labels adjusted to values 
of exceedance function in %  

{ln(α)-α ln(β)}+(α-1)[ln(vi)]: labels 
adjusted to values of hazard function 

Points   

symbol  open circle open circle 
basis one for each distinct value of x one for each interval in Chi-squared 
x-coordinate  ln(ui) ln(vi) 
y-coordinate -ln(-ln(Semp(ui))), where Semp(ui) = [n/(n+1)]* 

[1–Femp(ui)], where Femp is the empirical cdf 
ln(hN-A (vi)), where hN-A is Nelson-
Aalen hazard estimate 

Added line  
reference line dashed green line from upper left to lower 

right: Weibull line for –slope = 1 and 99% of 
doses < 1 rem 

blue curve: non-parametric smoother 
that shows change in hazard over dose 
range 
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Figure 1:  Sample Customized Goodness of Fit Plot 

 
 

 
Figure 2:  Corresponding Customized Weibull Probability Plot 
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Sites in Table 2 and Table 3 are ranked by the fitted Weibull 99th percentile, where sites from lowest to 
highest quartiles are color-coded in blue, green, purple, and red, respectively. Ranking sites by upper 
confidence limit (UCL) of their 99th percentiles, rather than by the percentiles themselves, takes into 
account uncertainties in the estimates of the parameters used to calculates the percentiles. For DOE, 
only 2 of 22 sites would change quartiles if ranking were done by the UCLs rather than the 99th 
percentiles; Sandia National Laboratory would move from Q2 to Q3, while Hanford would switch 
from Q3 to Q2. One might question whether partitioning into quartiles would be prudent for the DOE 
sites because there is a distinct gap between the 99th percentile of Pantex (5.141), the first site in the 
highest quartile, and Los Alamos National Laboratory (8.058), the second site in that quartile.  
 
An alternative to ranking sites by quartiles could be to use the performance indicators to identify 
clusters of sites. The most important subset would be those sites that do not appear to be implementing 
ARARA effectively. A second subset would be those sites that are a bridge between the first subset 
and the remainder of the sites that appear to implement ALARA effectively. Values for LANL, West 
Valley, Argonne National Laboratory, and Lawrence Livermore National Laboratory (LLNL) are 
presented in bold font in Table 2 to emphasize this subset of notably high 99th percentiles. Values for 
the bridge sites, Oak Ridge National Laboratory and Pantex, are underlined. Percent exceedance 
confirms the cluster of the four highest and two bridge sites and suggests adding Fermi Lab to the 
bridge sites. 
 
Among the 64 NRC sites, those that practice good ALARA are readily identified by exhibiting the 
lowest values of 99th percentile, UCL, and percent exceedance. Because the 99th percentiles and related 
statistics show no clear gaps between one quartile and the next, partitioning into quartiles may not 
make fullest use of the information obtained from the Weibull approach. The alternative use of 
Weibull performance indicators to identify the subset with notably high performance indicators and the 
subset of bridge sites reveals that Vermont Yankee, Palisades, and Perry are set apart by their high 99th 
percentiles and UCLs. Palisades and Perry each have over 30% of their doses exceeding 3 mSv, 
substantially exceeding any of the other sites. Bridge sites include Cooper Station, Pilgrim, Columbia 
Generating, Millstone, Waterford, and Nine Mile Point. Furthermore, Surry and Browns Ferry show 
percent exceedance above 15% and should be encouraged to examine their ALARA practices for 
possible enhancements.  
  
3.2 Utilizing Customized Weibull Plots to Assess Goodness of Fit 
 
The first step in assessing goodness of fit to the Weibull model is to compare the p-value of the site to 
the critical value for the group. The p-value column of Table 2 reveals that there is statistically 
significant lack of fit for the DOE sites of Idaho National Laboratory, LLNL, Pantex, and Waste 
Isolation Pilot Project (WIPP). Therefore, the pairs of Weibull plots for these four sites must be 
examined for patterns of the lack of fit to decide if it is substantive. When a site has statistically 
significant lack of fit, management must weigh in on the decision of whether to evaluate the site’s 
ALARA based on its Weibull performance. Customized Weibull goodness of fit and probability plots 
based on 2009 data for 22 DOE sites and 64 NRC sites appear in Appendix B and Appendix C, 
respectively, and provide complementary, critical information for making such administrative 
decisions. 
 
Of the four DOE sites with statistically significant lack of fit, WIPP is most easily resolved. The dose 
distribution for WIPP comprises only 33 individuals. With the Chi-squared restriction of at least five 
expected doses in each interval, the goodness of fit plot shows only four dose intervals, one of which 
contains no observed doses. The statistical lack of fit in this situation is not surprising. In the 
probability plot, the points are fairly close to the Weibull line, and the highest dose is about 0.5 mSv. 
Table 2 gives the percent exceedance of zero for 2.5 mSv. WIPP appears to have implemented 
ALARA very effectively and to have warranted its low ranking.  
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Table 2: DOE Sites Ranked by 2009 Fitted Weibull 99th Percentiles in mSv 

Site α β 
99th 

percentile

99th  
percentile

-ucl 
% 

exceedance nx X2 df 
p- 

value 

Waste Isolation 
Pilot Plant  0.871 0.060 0.453 0.655 0.000 33 15.866 3 *0.001

Princeton Plasma 
Physics Laboratory  1.154 0.100 0.479 0.656 0.000 25 4.007 3 0.261

Ames Laboratory  1.338 0.196 0.717 0.983 0.000 24 0.972 2 0.615

Oak Ridge – East 
Tennessee 
Technology Park  

0.992 0.211 1.091 1.550 0.002 35 6.579 5 0.254

Uranium Mill 
Tailings 
Remediation 
Action Project  

0.958 0.283 1.500 1.875 0.044 92 20.309 16 0.207

Paducah / 
Portsmouth 
Gaseous Diffusion 
Plant  

0.777 0.275 2.072 2.976 0.467 57 8.655 9 0.470

Brookhaven 
National 
Laboratory 

0.863 0.374 2.301 2.956 0.699 91 17.697 16 0.342

Nevada Test Site  0.919 0.514 2.815 3.591 1.638 86 20.358 15 0.159

Sandia National 
Laboratory 0.571 0.226 3.381 5.035 2.125 83 10.880 12 0.539

Oak Ridge – Y-12 
National Security 
Complex  

0.795 0.496 3.494 3.814 3.035 876 111.198 111 0.477

Savannah River 
Site  0.780 0.500 3.649 3.906 3.364 1,517 182.819 149 0.031 

Hanford – Office 
of River Protection  0.628 0.343 4.002 4.787 3.367 333 66.654 49 0.047

Fermi National 
Accelerator 
Laboratory 

0.929 0.789 4.187 4.906 6.046 198 29.739 18 0.040

Hanford Site 0.712 0.485 4.246 4.606 4.421 1,274 153.159 136 0.149
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99th  
99th 

Site α β percentile
percentile % p- 

X2 -ucl exceedance nx df value 
Hanford – Pacific 
Northwest 
National 
Laboratory  

0.651 0.406 4.337 5.361 4.164 223 62.430 36 0.004

Idaho National 
Laboratory 0.628 0.378 4.415 4.789 4.140 1,700 211.360 146 *0.000

Oak Ridge – Oak 
Ridge National 
Laboratory  

0.711 0.572 5.009 5.681 6.283 562 99.458 87 0.170

Pantex Plant 0.785 0.720 5.141 6.055 7.659 265 91.934 49 *0.000

Los Alamos 
National 
Laboratory 

0.633 0.713 8.058 8.954 11.603 1,007 171.662 137 0.024

West Valley 
Demonstration 
Project  

0.785 1.340 9.479 11.428 20.651 227 42.306 43 0.501

Argonne National 
Laboratory  0.585 0.769 10.560 14.523 14.308 134 15.597 22 0.835

Lawrence 
Livermore 
National 
Laboratory 

0.550 0.724 11.756 15.596 14.515 174 109.627 29 *0.000

*Below critical value of 0.0023; statistically significant evidence of lack of fit at the overall 0.05 level of significance based on 22 
sites. 
Ranking by 99th percentile, 99th percentile-ucl, and percent exceedance, Quantiles 1-4 are color-coded blue, green, purple, 
and red, respectively. 
Values of 99th percentile, 99the percentile-ucl, and percent exceedance are shown in bold font or underlined to indicate 
association with less effective ALARA or bridging toward less effective ALARA, respectively.  
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Table 3: NRC Sites Ranked by 2009 Fitted Weibull 99th Percentiles in mSv 

Site α β 
99th 

percentile

99th  
percentile

-ucl 
% 

exceedance nx X2 df 

 
p- 

value 
Callaway  0.969 0.199 1.066 1.258 0.000 154 29.962 25 0.2257
Davis-Besse  0.778 0.190 1.458 1.875 0.024 111 18.097 18 0.4493
Farley  0.934 0.522 2.783 3.037 0.707 648 86.015 96 0.7576
Cook  0.827 0.434 2.860 3.153 0.825 680 81.552 91 0.7506
Harris  0.850 0.459 2.874 3.157 0.837 673 74.173 92 0.9131
Robinson  0.756 0.384 3.002 3.886 1.003 117 14.911 20 0.7815
Palo Verde  0.795 0.475 3.348 3.584 1.487 1,459 141.875 141 0.4635
Mcguire  0.843 0.538 3.395 3.652 1.600 1,145 152.671 133 0.1167
Ginna  0.857 0.608 3.718 4.139 2.218 539 129.389 89 0.0034
Summer  0.846 0.617 3.859 4.236 2.479 712 140.035 108 0.0207
Comanche Peak  0.769 0.555 4.144 4.612 2.832 654 91.547 97 0.6372
Grand Gulf  0.827 0.652 4.242 4.844 3.244 354 82.137 64 0.0630
Watts Bar  0.778 0.587 4.279 4.711 3.131 811 138.405 114 0.0597
Vogtle  0.854 0.703 4.308 4.678 3.509 918 128.943 133 0.5833
Indian Point  0.828 0.687 4.450 4.851 3.724 896 118.022 130 0.7659
Wolf Creek  0.818 0.684 4.532 4.959 3.860 818 151.911 122 0.0344
Byron  0.804 0.666 4.556 4.962 3.844 975 149.906 135 0.1798
Prairie Island  0.873 0.805 4.737 5.252 4.708 553 101.097 99 0.4226
Kewaunee  0.832 0.815 5.209 5.802 5.656 557 110.739 99 0.1976
Oconee  0.818 0.799 5.273 5.601 5.692 1,802 209.714 205 0.3959
Seabrook  0.805 0.791 5.385 5.888 5.845 856 180.214 133 0.0040
Arkansas  0.834 0.864 5.501 5.976 6.458 961 125.321 149 0.9211
North Anna  0.824 0.851 5.539 6.084 6.447 740 144.229 124 0.1034
Braidwood  0.800 0.813 5.586 6.001 6.306 1,383 181.900 180 0.4464
South Texas  0.624 0.475 5.590 6.222 4.550 996 158.457 118 0.0077
Clinton  0.844 0.920 5.731 6.476 7.213 432 74.696 81 0.6758
Fermi  0.806 0.858 5.814 6.248 6.963 1,383 195.073 184 0.2741
Three Mile Island  0.867 1.018 6.026 6.364 8.407 2,014 234.346 244 0.6601
Oyster Creek  0.668 0.604 6.037 7.068 5.779 409 103.939 67 0.0026
San Onofre  0.828 0.948 6.105 6.524 8.053 1,546 212.960 205 0.3369
St. Lucie  0.846 0.988 6.112 6.588 8.344 1,120 182.447 174 0.3152
Calvert Cliffs  0.774 0.870 6.370 7.002 7.931 855 155.688 136 0.1189
Ft Calhoun  0.866 1.140 6.749 7.351 10.619 830 144.170 148 0.5737
Point Beach  0.799 0.993 6.818 7.516 9.526 757 144.392 130 0.1834
Catawba  0.794 0.986 6.851 7.362 9.517 1,371 246.029 195 0.0077
Fitzpatrick  0.663 0.683 6.945 8.290 7.394 336 68.290 58 0.1672
Dresden  0.771 0.948 6.972 7.427 9.389 1,911 273.812 232 0.0310
Sequoyah  0.750 0.922 7.171 7.739 9.460 1,376 195.887 189 0.3504
Susquehanna  0.778 0.996 7.193 7.631 10.084 2,103 293.314 249 0.0282
Diablo Canyon  0.876 1.272 7.378 7.765 12.808 2,296 282.899 292 0.6379
Quad Cities  0.813 1.120 7.433 7.849 11.486 2,338 340.258 278 0.0063
Turkey Point  0.735 0.922 7.461 8.066 9.833 1,342 223.272 186 0.0321
Crystal River  0.802 1.128 7.682 8.212 11.897 1,602 200.418 226 0.8888
Hatch  0.810 1.203 8.039 8.668 13.059 1,283 223.179 201 0.1355
Brunswick  0.777 1.132 8.191 8.657 12.575 2,449 372.734 287 *0.0005
Limerick  0.795 1.204 8.325 8.915 13.415 1,598 264.963 231 0.0619
Beaver Valley  0.799 1.230 8.424 9.028 13.789 1,493 234.036 223 0.2927
River Bend  0.715 1.001 8.570 9.236 11.791 1,615 279.160 215 0.0021
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Site α β 
99th 

percentile

99th  
percentile

-ucl 
% 

exceedance nx X2 

 
p- 

df value 
Salem  0.730 1.045 8.574 9.170 12.202 1,917 244.146 243 0.4673
Peach Bottom  0.761 1.169 8.788 9.337 13.597 2,075 295.819 267 0.1087
Surry  0.785 1.282 9.077 9.812 15.026 1,224 209.641 198 0.2718
Duane Arnold  0.701 1.073 9.593 10.584 13.471 947 167.933 152 0.1784
Monticello  0.669 0.975 9.650 10.561 12.589 1,221 265.755 176 *0.0000
Lasalle  0.698 1.097 9.886 10.593 13.960 1,977 337.452 252 *0.0003
Browns Ferry  0.753 1.292 9.911 10.546 15.933 2,127 263.420 281 0.7671
Nine Mile Point  0.720 1.287 10.830 11.734 16.645 1,409 247.904 215 0.0613
Waterford  0.801 1.608 10.924 11.767 20.158 1,322 217.605 225 0.6259
Millstone  0.668 1.135 11.284 12.492 15.434 969 238.123 154 *0.0000
Columbia Gen.  0.698 1.263 11.379 12.247 16.804 1,788 320.948 248 0.0012
Pilgrim  0.865 2.049 12.090 13.025 25.972 1,141 210.383 216 0.5950
Cooper Station  0.645 1.162 12.519 13.644 16.508 1,443 281.602 207 *0.0004
Vermont Yankee  0.569 0.985 14.526 17.736 15.774 370 95.890 63 0.0048
Palisades  0.768 2.275 16.732 18.324 30.024 970 211.108 183 0.0757
Perry  0.853 3.084 18.583 19.773 38.775 1,796 423.532 337 0.0009

*Below critical value of 0.000801; statistically significant evidence of lack of fit at the overall 0.05 level of significance. 
Ranking by 99th percentile, 99percentile-ucl, and %exceedance, Quantiles 1-4 are color-coded blue, green, purple, and red, 
respectively. 
Values of 99th percentile, 99percentile-ucl, and %exceedance are shown in bold font or underlined to indicate association 
with less effective ALARA or bridging toward less effective ALARA, respectively.  
 
Both plots for LLNL reveal clear lack of fit throughout the dose range. The goodness of fit plot shows 
that 10 of the 31 intervals have statistically significant lack of fit, and 6 of these 10 are below 0.5 mSv. 
Although intervals in this low dose range are not of major interest for ALARA, here, they make a 
strong contribution to the statistical lack of fit. The non-parametric smoother reveals that within the 
range of about 1-5 mSv, the hazard is less than Weibull and is decreasing. This section of the graph 
reflects a situation in which individuals are readily accumulating dose and moving on to higher dose 
levels. In contrast, the interval for 10 mSv and above contains a statistically significant increase in 
observed doses than expected by the Weibull model. The probability plot shows a substantial number 
of dose values above the reference line, as well as numerous dose values above 10 mSv. For doses 
above 10 mSv, there is a precipitous drop in “survival” in the probability plot corresponding to the 
increase in hazard in the goodness of fit plot. It appears that a concerted effort was made to ensure that 
individuals receiving 10 mSv would not accumulate more dose. Without this effort, a larger proportion 
of individuals would likely have received higher doses, whose points may have fallen closer to the 
line. Although a Weibull model does not fit the LLNL data, it appears to be the case that ALARA 
implementation for LLNL is among the least effective of DOE sites.  
 
The goodness of fit plot or Pantex reveals that six of the seven dose intervals having statistical lack of fit 
occur in the very low dose range. The Friedman smoother shows a hazard less than Weibull for the dose 
range below 5 mSv, although there is a rising trend beginning at about 2 mSv. In the probability plot, 
most points are fairly close to the Weibull line at doses above 0.4 mSv. If the Weibull fit were better in 
the low dose range, it appears that the 99th percentile might be slightly smaller because the Weibull line 
would have a steeper slope. Pantex is the first site in the highest quartile ranked by fitted 99th percentile. 
However, since the fitted 99th percentile may be slightly inflated by lack of fit in the low dose range, the 
alternative interpretation seems particularly appropriate (i.e., Pantex and Oak Ridge National Laboratory 
form a bridge between the sites that do not appear to be implementing ALARA effectively and those that 
do). 
 
The probability plot for Idaho shows most points fairly close to the Weibull line for doses in the range 
of approximately 0.5 mSv to 3.5 mSv. Below 0.5 mSv, the smaller the dose, the farther the point is 
below the Weibull line, indicating an excessive number of doses in the very low range. Above 3.5 
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mSv, the “survival” into higher doses is less than predicted by the Weibull. There is only one dose 
value above 5 mSv, which suggests that an administrative limit may have been applied. The fitted 99th 
percentile would likely be larger if individuals with doses above about 3.5 mSv were permitted to 
receive the annual doses toward which they were heading. The Friedman smoothed curve in the 
goodness of fit plot shows the hazard close to or below Weibull for dose intervals between about 0.5 
mSv and 3.5 mSv. However, at about 1 mSv, the hazard begins rising and exceeds Weibull expectation 
at about 3.5 mSv. A cluster of intervals between about 2mSv and 4 mSv has significantly higher 
observed than expected numbers of doses, as shown by the red diamonds. This cluster suggests that 
some individuals are being pulled out of areas or tasks that would lead them to accumulate 5 mSv of 
dose. It does not appear that optimal ALARA practices are being applied to maintain each individual’s 
dose as low as reasonably possible. Because the patterns in the lack of fit indicate that the fitted 99th 
percentile may have been decreased because of a 5 mSv individual limit, a reasonable management 
decision may be to include Idaho with the bridge sites Pantex and Oak Ridge National Laboratory. 
 
The p-values for NRC sites in Table 3 indicate statistically significant lack of fit for Brunswick, 
Cooper Station, LaSalle, Millstone, and Monticello using a critical value based on 64 sites in the 
group. The pairs of Weibull plots for these five sites, found in Appendix C, should be examined for 
patterns in the lack of fit. This examination is particularly important for Cooper Station and Millstone 
because they have been identified by Weibull-based performance indicators as belonging to the 
transition sites between effective and less effective ALARA implementation. 
 
In the probability plot for Cooper Station, points are fairly close to, but generally above, the Weibull 
line for doses larger than about 1 mSv. However, above 15 mSv, doses begin dropping below the line, 
which suggests that individuals may have been pulled out of jobs with exposure potential to prevent 
their reaching 20 mSv. The fitted 99th percentile may have been even higher if the points in the lower 
dose range were not pulling the slope toward being steeper. The goodness of fit plot reveals a cluster 
of intervals with significant lack of fit in the range between 0.1 mSv and 0.5 mSv. Although the 
majority of the diamond-circled points occur below 1 mSv, there are several such intervals above this 
value. Confirming that doses from about 0.5 mSv are in higher intervals than predicted by the Weibull 
is the fact that the non-parametric smoother is below the Weibull hazard line. Although the Weibull 
distribution has significant lack of fit for Copper Station, the ranking position for this site based on 
Weibull performance indicators appears to be reasonable and even conservative. 
 
The Millstone probability plot reveals an obvious lack of fit to the Weibull at the high doses. It is 
likely that an administrative rule prescribes that individuals whose doses reach a certain level are to be 
removed from tasks that have the potential of allowing their doses to reach 20 mSv. The Friedman 
smoother in the goodness of fit plot confirms this observation. Intervals generally have fewer observed 
than expected doses in the range of about 0.4 mSv to 5 mSv. However, at 5 mSv, the smoother takes a 
sharp turn upward, reflecting the influence of the intervals in the highest doses range that are 
significantly above the Weibull hazard. Also contributing to the Chi-squared for significant lack of fit 
are various intervals scattered throughout the dose range to about 2 mSv; these intervals generally have 
more observed than expected doses in an area where the trend is fewer observed than expected. 
Considering the Millstone dose distribution that might occur without the likely administrative 
intervention, it appears that the doses would be much closer to the Weibull line on the probability plot. 
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4.0  INVESTIGATING THE EFFECTS OF TRANSIENT AND  
EXPERIENCED WORKERS 
 
4.1 Transient Workers at Nuclear Power Plants 
 
Certain job tasks, such as nuclear reactor refueling, are done periodically rather than on a routine basis. 
Individuals who carry out such tasks do not perform their job duties at one site but instead are 
transients who work wherever their services are required and go from one site to another during the 
year. Because doses are reported by site, the annual dose for a transient worker is partitioned into 
separate records, one record for each site of employment during the year. This method of reporting is 
appropriate for assigning to a site the amount of dose that was accrued by individuals working there. 
However, when records for all NRC sites are combined for analysis, the doses of transient workers 
remain in their separate records. Therefore, an additional analysis was carried out for all NRC sites 
combined in which dose records for each individual who had worked at more than one site were 
replaced with one record containing the combined dose received by that person at all reactors during 
the year. Figure 3 is the probability plot for all NRC sites with transient workers’ doses separated by 
site, while Figure 4 is the corresponding plot with each transient worker’s doses combined into one 
record. Table 4 summarizes the results for these two ways of analyzing transient worker dose. 
 
 
Table 4:  Comparing Weibull Results with Two Methods of Accruing Transient Worker Dose 

 Dose Separated by Site of Accrual Dose Combined into One 
Record  

Number of Records 74,667 60,487 

Fitted 99th Percentile 8.102 mSv 10.694 mSv 

% Exceedance for 3 mSv 11.41% 15.86% 

 -Slope 0.740 0.707 
 
 
When transients’ doses are accumulated over sites, an additional 4.5% of the dose records exceed 3 
mSv, and the 99th percentile increases by about 2.6 mSv, or over 30%. Also, there was an increase in 
dose values above 20 mSv; however, no individuals approached an annual dose of 50 mSv. The slope 
of the Weibull line is somewhat less steep because of the influence of the higher doses from the 
transient workers that pull the line farther to the right, and the higher doses fall fairly close to the 
Weibull fit line. Examining the high-dose end of the plot in which transient doses are partitioned by 
site, it is clear that the separate sites each enforced an annual upper bound of 20 mSv on individual 
dose accumulation because dose values drop nearly vertically rather than falling near the Weibull line. 
Goodness of fit plots are not presented here because they are not meaningful for datasets of this size.  
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Figure 3:  Weibull Probability Plot for All NRC Sites 2009 – 
Transients’ Doses Separated by Site of Accrual 

 
 

Figure 4:  Weibull Probability Plot for All NRC Sites 2009 –  
Transients’ Doses Accumulated into One Record per Person 
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4.2 Sensitivity Analysis of Experienced Worker Effect at a Nuclear Power Plant 
 
Specialists are commonly trained to perform job tasks that involve potentially high exposure to 
occupational radiation. Using experienced workers among these specialists can promote safety and 
result in the lowest accumulation of collective dose at a site. With historical emphasis on the first 
aspect of ALARA (i.e., maintaining the collective dose as low as reasonably achievable), having these 
experienced individuals carry out such tasks can be seen as an acceptable approach for supporting 
ALARA. The purpose of this analysis is to investigate how the Weibull methodology, and particularly 
the 99th percentile indicator, is affected by this ALARA approach where an experienced worker may 
receive a higher individual dose while the collective dose for the task is reduced. 
 
To investigate the experienced worker effect on the Weibull approach, several scenarios were 
developed and an informal sensitivity analysis was carried out to examine changes in the parameter 
values and performance indicators. Table 5 describes the three scenarios based on the 2009 Crystal 
River dose distribution. Column definitions are identical to columns in Tables 2 and 3. Customized 
probability plots for scenarios 1-3 appear in Figures 5-7. Weibull-based results for each scenario are 
condensed in Table 6. 
 
 

Table 5:  Description of Scenarios for Sensitivity Analysis of Experienced Worker Effect 

Scenario  Description 

1 The actual dose distribution as reported by the nuclear power plant. 

2 

The actual distribution is modified by reducing or eliminating the dose received by one 
individual in the higher dose ranges and distributing this dose among two or three 
workers in the lower dose ranges. The effect that is being modeled here is that an 
experienced worker can get a task done more quickly with less dose compared with two 
or three workers that may take somewhat less time but would be less efficient and 
would end up increasing the collective dose for the task. Using an experienced worker 
that receives a higher individual dose but reduces the collective dose for a task is an 
acceptable implementation of the ALARA principle. Scenario 2 involved less than 10 
individual dose modifications. It should be noted that this effect is only appropriate for 
individuals in the higher dose ranges in a distribution as the tasks for these individuals 
would provide opportunities for such ALARA optimization. 

3 
In scenario 3, the same modifications were performed as in scenario 2 but with 12 
additional modifications simulating the use of less experienced workers that received 
less individual dose, but a higher collective dose for the assigned task. 

 
 

Table 6:  Results of Scenarios for Sensitivity Analysis of Experienced Worker Effect 

Scenario Α β 

99th 
percentil

e 
99th % 
tile- ucl

% 
exceedan

ce nx X2 df p-value

1 0.802 1.128 7.682 8.212 11.897 1602 200.42 226 0.8888

2 0.801 1.143 7.803 8.345 11.148 1595 209.10 227 0.7972

3 0.802 1.156 7.864 8.410 12.386 1595 212.48 228 0.7620

 
As can be seen in Table 6, each successive scenario experienced an increase in the 99th percentile. This 
would indicate that when less experienced workers are used for a task, the effect on the 99th percentile 
of the Weibull plot would show this to be a less effective ALARA practice. This analysis assumes; 1) 
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that the use of an experienced worker would reduce the collective dose for a task while the 
experienced individual would receive a higher dose and, 2) that two or three inexperienced workers 
would increase the collective dose for the task while individually received lower doses. 
 
The observed impact on the 99th percentile shows that even with a large workforce at a reactor of over 
1500 individuals with measurable dose, the strategic use of a relatively small number of experienced 
workers (< 20) that reduce collective dose for a task will have a positive impact on the 99th percentile 
ALARA performance indicator. 
 
 
 

Figure 11:  Weibull Probability Plot for Crystal River 2009 – Scenario 1 
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Figure 12:  Weibull Probability Plot for Crystal River 2009 – Scenario 2 

 
 

 
Figure 13:  Weibull Probability Plot for Crystal River 2009 – Scenario 3 
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5.0  CONCLUSIONS 
 
The Weibull-based methods for creating and utilizing performance indicators to evaluate ALARA 
involve these features:  
 

• using maximum likelihood methods to estimate the shape and scale parameter values of a 
Weibull distribution for each site in the group  

• using the site-specific parameters to calculate the fitted 99th percentile for each site as a 
performance indicator and the percent exceedance (e.g., for 2.5 mSv for DOE sites and 3 mSv 
for NRC sites) as an alternative performance indicator 

• performing Chi-squared goodness of fit tests to identify sites in the group with statistically 
significant lack of fit to a Weibull distribution 

• reviewing customized probability and goodness of fit plots for each site with statistical lack of 
fit to decide whether it appears to be reasonable to use its Weibull-based performance 
indicators  

 
Weibull-based performance indicators can be used to detect those sites in the group that do not appear 
to be implementing ALARA effectively and to find additional sites that bridge between effective and 
less effective ALARA implementation. Once these sites are identified, management at each of the sites 
should be consulted to determine whether any operational issues transpired during the year that 
affected the dose distribution. Also, Weibull-based performance indicators for an identified site should 
be compared with the site’s values for previous years to see whether the current set of results is an 
anomaly. 
 
One might argue whether it is justifiable to use the fitted 99th percentile and percent exceedance to 
evaluate ALARA for sites that have statistically significant lack of fit to the Weibull model. However, 
when a data set contains hundreds or even thousands of doses, it would not be surprising that a two-
parameter model would have statistical lack of fit. To determine whether the lack of fit is substantial 
enough for the Weibull-based performance indicators to be rejected, further investigation of the 
patterns of lack of fit should be carried out. A managerial decision to use these indicators may be 
reasonable for certain dose distributions with lack of fit. Examples of such distributions include those 
where the lack of fit contributions to the Chi-squared statistic are concentrated in intervals from the 
very low dose range or from intervals around values that appear to have been set administratively as an 
upper bound for an individual’s dose. The customized Weibull probability and goodness of fit plots 
provide abundant complementary information and allow visual inspection for patterns of lack of fit 
that can be useful when making such a decision. Although utilizing a boundary dose may ensure that 
no individuals at a site receive unacceptably high radiation exposure, ALARA is better served by 
actively ensuring throughout the year that each worker’s dose remains as low as reasonable achievable. 
In addition, imposing an individual upper limit for the year affects the goodness of fit of the site’s 
doses to the Weibull or any other statistical distribution because patterns in the dose distribution are 
administratively manipulated by imposing such a limit.  
 
As can be seen in the analysis of transient and experienced workers, the Weibull methodology reflects 
the expected impact of these effects on the ALARA performance indicators. In the case of transient 
workers, these individuals actually receive higher doses from their work at multiple facilities during 
the year. Therefore one would anticipate an effect on the Weibull indicators to show less effective 
ALARA performance when these individuals are correctly reflected in the worker dose distribution. 
This was observed when the Weibull method was applied to the transient worker distribution. The 
effect of experienced workers in the dose distribution indicate that an individual worker that receives a 
higher individual dose, but who contributes to a lower collective dose due to experience, has a impact 
on the Weibull ALARA performance indicator that supports this practice as a proper ALARA 
technique. 
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APPENDIX A:  Statistical Details 
 
A.1 Derivation of the Equation of the Weibull Hazard Line  
 
The Weibull hazard function for shape parameter α and scale parameter β is given by: 
 
h(v) = α/β [v/β]α –1 
ln [h(v)] = ln(α) – ln(β) + (α-1)[ln(v) - ln(β)] 
ln [h(v)] = { ln(α) – ln(β) - (α-1) ln(β) } + (α-1)[ln(v)] 
ln [h(v)] = { ln(α) – ln(β) - α* ln(β) + ln(β) } + (α-1)[ln(v)] 
ln [h(v)] = { ln(α) - α ln(β) } + (α-1)[ln(v)]    (A1) 
 
The line for ln(v) on x-axis and ln [h(v)] on y-axis has y-intercept [ln(α) - α ln(β)] and slope (α-1). 
 
A.2 Details of Formal Assessment of Goodness of Fit  
 
Goodness of fit is commonly evaluated with a Chi-squared test having a null hypothesis that the data 
follow the specified distribution. The data are separated into k bins, and the test statistic is defined as 
the sum over all bins of the squares of the residuals, where a residual is calculated as (observed – 
expected) / sqrt(expected). That is, X2 = ∑ (Oi – Ei)2 / Ei, where the sum over i goes from 1 to k. To 
obtain the bins for the Weibull goodness of fit test for a site, the range of the site’s dose distribution is 
divided into intervals that are determined by quantiles of the Weibull distribution having the site-
specific shape and scale parameters. In each interval, the expected number of doses is based on the 
Weibull cumulative distribution function and n, which is the total number of doses that exceed the 
MIT. Specifically, Ei = n(F(Xu) – F(Xl)), where Xu and Xl are the upper and lower limits, respectively 
of the doses in interval i. The cumulative distribution function for a Weibull distribution with shape 
parameter α and scale parameter β is specified as follows: 
 P[X < x] = F(x) = 1 – exp(–[x/β]α) , α> 0, β > 0.    (A2) 
 
Because an expected frequency of at least five is required for the Chi-squared approximation to be 
valid, intervals determined by the quantiles are combined where necessary to meet this restriction. In 
addition, no interval can have width smaller than 0.01 mSv since doses are not recorded in smaller 
units. Because two parameters are estimated, the number of degrees of freedom (df) for the Chi-
squared test is k – 2. 
 
For each site a p-value is determined based on the sum of the squared residuals, X2, and the 
appropriate degrees of freedom. The p-value is the probability of observing a X2 value that is greater 
than or equal to the calculated value for the given site. At the 0.05 level of significance, the null 
hypothesis expressed in terms of p-values is this: H0: p-value > 0.05. If the null hypothesis is true, then 
there is a probability of 0.05 that a Type I error (rejecting the null hypothesis when it is true) will 
occur, and there is a probability of 0.95 of not rejecting the null hypothesis and coming to a “not 
evidence for significant lack of fit” conclusion. Goodness of fit is assessed independently with a p-
value for each site in the group, and each site may be considered as a subgroup of a larger group. The 
statistical question to be answered is which sites in the group have significant lack of fit to the Weibull 
model. Although for each individual site there is a 5% chance of erroneously rejecting a Weibull 
model when it does indeed fit, this chance increases depending upon the number of sites being tested 
simultaneously. For a group of 20 sites that each fit a Weibull model the expected number of 
erroneous rejections of the null hypothesis is 20*0.05 = 1. The probability that none of the tests is 
significant is 0.9520 = 0.36, and the probability of getting at least one significant result by chance is 1 – 
0.36, which equals 0.64 or 64%. When testing 50 sites simultaneously the probability of obtaining one 
or more p-values < 0.05 by chance is (1- 0.9550), which equals 0.92 or 92%. To maintain an overall 
significance level of at most 0.05, each site is compared to an adjusted critical p-value based on the 
number of sites in the group. Using nsites to designate the number of sites in the group, the adjusted 
critical value against which each site’s p-value is calculated by 1 – [0.95 (1/nsites)]. Table A-1 gives the 
adjusted critical value for each number of simultaneous tests from 2-100. 
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A-2 

An alternative, more conservative approach to determining which sites have statistically significant 
lack of fit is to select a fixed critical value, such as 0.01 or 0.05. Any site having a p-value below the 
fixed critical level would be further evaluation for lack of fit based on the observed and expected 
values in each bin and the hazard function estimate for each interval. Tables of observed, expected, 
and estimated hazard could be examined and goodness of fit graphs based on the hazard function 
would present these values visually. If the resulting evaluation indicated that the Weibull model was 
reasonable, then estimated variance of the Weibull parameters would be multiplied by the 
heterogeneity factor Φ = X2 / df as is done in biological assays and other areas of data analysis 
(Finney, 1984). These adjusted variances would be used in the calculation of confidence intervals. 
 
 
Table A-1:  Adjusted critical value for n simultaneous hypothesis tests to maintain overall 
significance level of 0.05 

nsites 

probability of  
p-value 

< 0.05 by chance 
(in %) 

adjusted 
cutpoint 

1-(0.951/nsites) 

 2 9.75 0.025321 
 3 14.26 0.016952 
 4 18.55 0.012741 
 5 22.62 0.010206 
 6 26.49 0.008512 
 7 30.17 0.007301 
 8 33.66 0.006391 
 9 36.98 0.005683 
 10 40.13 0.005116 
 11 43.12 0.004652 
 12 45.96 0.004265 
 13 48.67 0.003938 
 14 51.23 0.003657 
 15 53.67 0.003414 
 16 55.99 0.003201 
 17 58.19 0.003013 
 18 60.28 0.002846 
 19 62.26 0.002696 
 20 64.15 0.002561 
 21 65.94 0.002440 
 22 67.65 0.002329 
 23 69.26 0.002228 
 24 70.80 0.002135 
 25 72.26 0.002050 
 26 73.65 0.001971 
 27 74.97 0.001898 
 28 76.22 0.001830 
 29 77.41 0.001767 
 30 78.54 0.001708 

nsites 

probability of  
p-value 

< 0.05 by chance 
(in %) 

adjusted 
cutpoint 

1-(0.951/nsites) 

 31 79.61 0.001653 
 32 80.63 0.001602 
 33 81.60 0.001553 
 34 82.52 0.001507 
 35 83.39 0.001464 
 36 84.22 0.001424 
 37 85.01 0.001385 
 38 85.76 0.001349 
 39 86.47 0.001314 
 40 87.15 0.001282 
 41 87.79 0.001250 
 42 88.40 0.001221 
 43 88.98 0.001192 
 44 89.53 0.001165 
 45 90.06 0.001139 
 46 90.55 0.001114 
 47 91.03 0.001091 
 48 91.47 0.001068 
 49 91.90 0.001046 
 50 92.31 0.001025 
 51 92.69 0.001005 
 52 93.06 0.000986 
 53 93.40 0.000967 
 54 93.73 0.000949 
 55 94.05 0.000932 
 56 94.34 0.000916 
 57 94.63 0.000899 
 58 94.90 0.000884 
 59 95.15 0.000869 



nsites 

probability of  
p-value 

< 0.05 by chance 
(in %) 

adjusted 
cutpoint 

1-(0.951/nsites) 

 60 95.39 0.000855 
 61 95.62 0.000841 
 62 95.84 0.000827 
 63 96.05 0.000814 
 64 96.25 0.000801 
 65 96.44 0.000789 
 66 96.61 0.000777 
 67 96.78 0.000765 
 68 96.94 0.000754 
 69 97.1 0.000743 
 70 97.24 0.000732 
 71 97.38 0.000722 
 72 97.51 0.000712 
 73 97.64 0.000702 
 74 97.75 0.000693 
 75 97.87 0.000684 
 76 97.97 0.000675 
 77 98.07 0.000666 
 78 98.17 0.000657 
 79 98.26 0.000649 
 80 98.35 0.000641 
 81 98.43 0.000633 
 82 98.51 0.000625 
 83 98.58 0.000618 
 84 98.65 0.000610 
 85 98.72 0.000603 
 86 98.79 0.000596 
 87 98.85 0.000589 
 88 98.90 0.000583 
 89 98.96 0.000576 
 90 99.01 0.000570 
 91 99.06 0.000564 
 92 99.11 0.000557 
 93 99.15 0.000551 
 94 99.19 0.000546 
 95 99.23 0.000540 
 96 99.27 0.000534 
 97 99.31 0.000529 
 98 99.34 0.000523 
 99 99.38 0.000518 

probability of  
adjusted p-value 
cutpoint < 0.05 by chance 

nsites (in %) 1-(0.951/nsites) 

 100 99.41 0.000513 
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APPENDIX B:  Customized Weibull Probability Plots By Site For Doe 2009  
 
 

 
 
 

Figure B1:  Weibull Goodness of Fit Plot for Ames Laboratory. 
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Figure B2:  Weibull Probability Plot for Ames Laboratory.
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Figure B3:  Weibull Goodness of Fit Plot for Argonne National Laboratory. 
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Figure B4:  Weibull Probability Plot for Argonne National Laboratory. 
 

B-4 



 
 
 

Figure B5:  Weibull Goodness of Fit Plot for Brookhaven National Laboratory. 
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Figure B6:  Weibull Probability Plot for Brookhaven National Laboratory. 
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Figure B7:  Weibull Goodness of Fit Plot for Fermilab. 
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Figure B8:  Weibull Probability Plot for Fermilab. 
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Figure B9:  Weibull Goodness of Fit Plot for Hanford. 
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Figure B10:  Weibull Probability Plot for Hanford. 
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Figure B11:  Weibull Goodness of Fit Plot for Hanford Office of River Protection. 
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Figure B12:  Weibull Probability Plot for Hanford Office of River Protection.

B-12 



 
 

 
 
 

Figure B13:  Weibull Goodness of Fit Plot for Hanford Pacific Northwest National 
Laboratory. 
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Figure B14:  Weibull Probability Plot for Hanford Pacific Northwest National 
Laboratory. 
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Figure B15:  Weibull Goodness of Fit Plot for Idaho National Laboratory. 
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Figure B16:  Weibull Probability Plot for Idaho National Laboratory. 
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Figure B17:  Weibull Goodness of Fit Plot for Los Alamos National Laboratory. 
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Figure B18:  Weibull Probability Plot for Los Alamos National Laboratory. 
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Figure B19:  Weibull Goodness of Fit Plot for Lawrence Livermore National 
Laboratory. 
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Figure B20:  Weibull Probability Plot for Lawerence Livermore National Laboratory. 
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Figure B21:  Weibull Goodness of Fit Plot for Nevada Test Site. 
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Figure B22:  Weibull Probability Plot for Nevada Test Site. 
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Figure B23:  Weibull Goodness of Fit Plot for Oak Ridge – East Tennessee 
Technology Park. 
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Figure B24:  Weibull Probability Plot for Oak Ridge – East Tennessee Technology 
Park. 

B-24 



 

 
 
 

Figure B25:  Weibull Goodness of Fit Plot for Oak Ridge – Oak Ridge National 
Laboratory. 
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Figure B26:  Weibull Probability Plot for Oak Ridge – Oak Ridge National Laboratory. 
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Figure B27:  Weibull Goodness of Fit Plot for Oak Ridge – Y-12 National Security 
Complex. 
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Figure B28:  Weibull Probability Plot for Oak Ridge – Y-12 National Security Complex.
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Figure B29:  Weibull Goodness of Fit Plot for Paducah-Portsmouth. 
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Figure B30:  Weibull Probability Plot for Paducah-Portsmouth. 
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Figure B31:  Weibull Goodness of Fit Plot for Pantex Plant. 
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Figure B32:  Weibull Probability Plot for Pantex Plant. 
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Figure B33:  Weibull Goodness of Fit Plot for Princeton Plasma Physics Laboratory. 

B-33 



 

 
 
 
 

Figure B34:  Weibull Probability Plot for Princeton Plasma Physics Laboratory.
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Figure B35:  Weibull Goodness of Fit Plot for Sandia National Laboratory. 
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Figure B36:  Weibull Probability Plot for Sandia National Laboratory. 
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Figure B37:  Weibull Goodness of Fit Plot for Savannah River Site. 
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Figure B38:  Weibull Probability Plot for Savannah River Site.
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Figure B39:  Weibull Goodness of Fit Plot for Uranium Mill Tailings Remedial Action 
Project. 
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Figure B40:  Weibull Probability Plot for Uranium Mill Tailings Remedial Action 
Project. 
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Figure B41:  Weibull Goodness of Fit Plot for West Valley Environment Services, LLC. 
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Figure B42:  Weibull Probability Plot for West Valley Environment Services, LLC. 
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Figure B43:  Weibull Goodness of Fit Plot for Waste Isolation Pilot Plant. 
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Figure B44:  Weibull Probability Plot for Waste Isolation Pilot Plant. 
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Figure C1:  Weibull Goodness of Fit Plot for Arkansas. 
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Figure C2:  Weibull Probability Plot for Arkansas. 
 

C-2 



 
 
 

Figure C3:  Weibull Goodness of Fit Plot for Beaver Valley. 
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Figure C4:  Weibull Probability Plot for Beaver Valley. 
 
 

C-4 



 

 
 
 

Figure C5:  Weibull Goodness of Fit Plot for Braidwood. 
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Figure C6:  Weibull Probability Plot for Braidwood. 
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Figure C7:  Weibull Goodness of Fit Plot for Browns Ferry. 
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Figure C8:  Weibull Probability Plot for Browns Ferry. 

C-8 



 

 
 
 

Figure C9:  Weibull Goodness of Fit Plot for Brunswick. 
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Figure C10:  Weibull Probability Plot for Brunswick.
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Figure C11:  Weibull Goodness of Fit Plot for Byron. 
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Figure C12:  Weibull Probability Plot for Byron. 

C-12 



 

 
 
 

Figure C13:  Weibull Goodness of Fit Plot for Callaway. 
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Figure C14:  Weibull Probability Plot for Callaway. 
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Figure C15:  Weibull Goodness of Fit Plot for Calvert Cliffs. 
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Figure C16:  Weibull Probability Plot for Calvert Cliffs. 
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Figure C17:  Weibull Goodness of Fit Plot for Catawba. 
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Figure C18:  Weibull Probability Plot for Catawba. 
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Figure C19:  Weibull Goodness of Fit Plot for Clinton 
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Figure C20:  Weibull Probability Plot for Clinton. 
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Figure C21:  Weibull Goodness of Fit Plot for Columbia Generating. 

C-21 



 

 
 
 

Figure C22:  Weibull Probability Plot for Columbia Generating. 
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Figure C23:  Weibull Goodness of Fit Plot for Comanche Peak. 
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Figure C24:  Weibull Probability Plot for Comanche Peak. 
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Figure C25:  Weibull Goodness of Fit Plot for Cook. 
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Figure C26:  Weibull Probability Plot for Cook.
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Figure C27:  Weibull Goodness of Fit Plot for Cooper Station. 
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Figure C28:  Weibull Probability Plot for Cooper Station. 
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Figure C29:  Weibull Goodness of Fit Plot for Crystal River. 
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Figure C30:  Weibull Probability Plot for Crystal River. 
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Figure C31:  Weibull Goodness of Fit Plot for Davis-Besse. 
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Figure C32:  Weibull Probability Plot for Davis-Besse.

C-32 



 

 
 
 

Figure C33:  Weibull Goodness of Fit Plot for Diablo Canyon. 
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Figure C34:  Weibull Probability Plot for Diablo Canyon. 
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Figure C35:  Weibull Goodness of Fit Plot for Dresden. 
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Figure C36:  Weibull Probability Plot for Dresden.
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Figure C37:  Weibull Goodness of Fit Plot for Duane Arnold. 
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Figure C38:  Weibull Probability Plot for Duane Arnold. 
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Figure C39:  Weibull Goodness of Fit Plot for Farley. 
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Figure C40:  Weibull Probability Plot for Farley. 
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Figure C41:  Weibull Goodness of Fit Plot for Fermi. 
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Figure C42:  Weibull Probability Plot for Fermi. 
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Figure C43:  Weibull Goodness of Fit Plot for Fitzpatrick.
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Figure C44:  Weibull Probability Plot for Fitzpatrick. 
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Figure C45:  Weibull Goodness of Fit Plot for Fort Calhoun. 
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Figure C46:  Weibull Probability Plot for Fort Calhoun. 

C-46 



 
 
 
 

Figure C47:  Weibull Goodness of Fit Plot for Ginna.
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Figure C48:  Weibull Probability Plot for Ginna. 
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Figure C49:  Weibull Goodness of Fit Plot for Grand Gulf. 
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Figure C50:  Weibull Probability Plot for Grand Gulf. 
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Figure C51:  Weibull Goodness of Fit Plot for Harris. 
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Figure C52:  Weibull Probability Plot for Harris. 
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Figure C53:  Weibull Goodness of Fit Plot for Hatch. 
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Figure C54:  Weibull Probability Plot for Hatch. 
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Figure C55:  Weibull Goodness of Fit Plot for Indian Point. 
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Figure C56:  Weibull Probability Plot for Indian Point. 
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Figure C57:  Weibull Goodness of Fit Plot for Kewaunee. 
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Figure C58:  Weibull Probability Plot for Kewaunee. 
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Figure C59:  Weibull Goodness of Fit Plot for LaSalle. 
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Figure C60:  Weibull Probability Plot for LaSalle. 
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Figure C61:  Weibull Goodness of Fit Plot for Limerick. 
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Figure C62:  Weibull Probability Plot for Limerick. 

C-62 



 
 
 

Figure C63:  Weibull Goodness of Fit Plot for McGuire. 
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Figure C64:  Weibull Probability Plot for McGuire. 
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Figure C65:  Weibull Goodness of Fit Plot for Millstone.
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Figure C66:  Weibull Probability Plot for Millstone. 
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Figure C67:  Weibull Goodness of Fit Plot for Monticello.
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Figure C68:  Weibull Probability Plot for Monticello. 
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Figure C69:  Weibull Goodness of Fit Plot for Nine Mile Point. 
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Figure C70:  Weibull Probability Plot for Nine Mile Point. 
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Figure C71:  Weibull Goodness of Fit Plot for North Anna. 
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Figure C72:  Weibull Probability Plot for North Anna. 
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Figure C73:  Weibull Goodness of Fit Plot for Oconee. 
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Figure C74:  Weibull Probability Plot for Oconee. 
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Figure C75:  Weibull Goodness of Fit Plot for Oyster Creek. 
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Figure C76:  Weibull Probability Plot for Oyster Creek. 
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Figure C77:  Weibull Goodness of Fit Plot for Palisades. 
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Figure C78:  Weibull Probability Plot for Palisades. 
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Figure C79:  Weibull Goodness of Fit Plot for Palo Verde. 
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Figure C80:  Weibull Probability Plot for Palo Verde. 
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Figure C81:  Weibull Goodness of Fit Plot for Peach Bottom. 
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Figure C82:  Weibull Probability Plot for Peach Bottom. 
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Figure C83:  Weibull Goodness of Fit Plot for Perry. 
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Figure C84:  Weibull Probability Plot for Perry. 
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Figure C85:  Weibull Goodness of Fit Plot for Pilgrim. 

C-85 



 

 
 
 

Figure C86:  Weibull Probability Plot for Pilgrim. 
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Figure C87:  Weibull Goodness of Fit Plot for Point Beach.
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Figure C88:  Weibull Probability Plot for Point Beach. 
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Figure C89:  Weibull Goodness of Fit Plot for Prairie Island.
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Figure C90:  Weibull Probability Plot for Prairie Island. 
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Figure C91:  Weibull Goodness of Fit Plot for Quad Cities. 
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Figure C92:  Weibull Probability Plot for Quad Cities. 
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Figure C93:  Weibull Goodness of Fit Plot for River Bend.
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Figure C94:  Weibull Probability Plot for River Bend. 
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Figure C95:  Weibull Goodness of Fit Plot for Robinson. 
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Figure C96:  Weibull Probability Plot for Robinson. 
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Figure C97:  Weibull Goodness of Fit Plot for Salem.

C-97 



 

 
 
 

Figure C98:  Weibull Probability Plot for Salem. 
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Figure C99:  Weibull Goodness of Fit Plot for San Onofre.
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Figure C100:  Weibull Probability Plot for San Onofre. 
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Figure C101:  Weibull Goodness of Fit Plot for Seabrook.
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Figure C102:  Weibull Probability Plot for Seabrook. 
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Figure C103:  Weibull Goodness of Fit Plot for Sequoyah. 
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Figure C104:  Weibull Probability Plot for Sequoyah. 
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Figure C105:  Weibull Goodness of Fit Plot for South Texas. 
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Figure C106:  Weibull Probability Plot for South Texas. 
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Figure C107:  Weibull Goodness of Fit Plot for St. Lucie.
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Figure C108:  Weibull Probability Plot for St. Lucie. 
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Figure C109:  Weibull Goodness of Fit Plot for Summer. 
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Figure C110:  Weibull Probability Plot for Summer. 
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Figure C111:  Weibull Goodness of Fit Plot for Surry. 
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Figure C112:  Weibull Probability Plot for Surry. 
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Figure C113:  Weibull Goodness of Fit Plot for Susquehanna. 
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Figure C114:  Weibull Probability Plot for Susquehanna. 
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Figure C115:  Weibull Goodness of Fit Plot for Three Mile Island. 
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Figure C116:  Weibull Probability Plot for Three Mile Island. 
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Figure C117:  Weibull Goodness of Fit Plot for Turkey Point.

C-117 



 

 
 
 

Figure C118:  Weibull Probability Plot for Turkey Point. 
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Figure C119:  Weibull Goodness of Fit Plot for Vermont Yankee.
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Figure C120:  Weibull Probability Plot for Vermont Yankee. 
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Figure C121:  Weibull Goodness of Fit Plot for Vogtle. 
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Figure C122:  Weibull Probability Plot for Vogtle. 
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Figure C123:  Weibull Goodness of Fit Plot for Waterford.

C-123 



 

 
 
 

Figure C124:  Weibull Probability Plot for Waterford. 
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Figure C125:  Weibull Goodness of Fit Plot for Watts Bar.
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Figure C126:  Weibull Probability Plot for Watts Bar. 
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Figure C127:  Weibull Goodness of Fit Plot for Wolf Creek. 
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Figure C128:  Weibull Probability Plot for Wolf Creek. 
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