

Material Selection According to ALARA during Design Stages of EPR[™]

Dr. Patrick Jolivet AREVA Expert - Radiation Protection and Chemical Engineering *Co-authors: Anne Tamba, Farah Chahma*

ISOE International Symposium, Cambridge, United Kingdom, 17-19 November 2010

Content

Introduction

- Activity Build-Up on Primary Component Surfaces
- ► Impact of Current EPR[™] Material Inventory on Primary Circuit Contamination
- Are Further Improvements in Material Inventory ALARA?
- Conclusion

Introduction

1. Introduction


- **2.** Activity Build-Up on Primary Component Surfaces
- **3.** Impact of Current EPR[™] Material Inventory on Primary Circuit Contamination
- 4. Are Further Improvements in Material Inventory ALARA?
- **5.** Conclusion

The EPR™ Nuclear Power Plant

Pressurized Water Reactor of generation III+

Four units are currently under construction

OLKILUOTO, FINLAND

ENGINEERING & PROJECTS ORGANIZATION

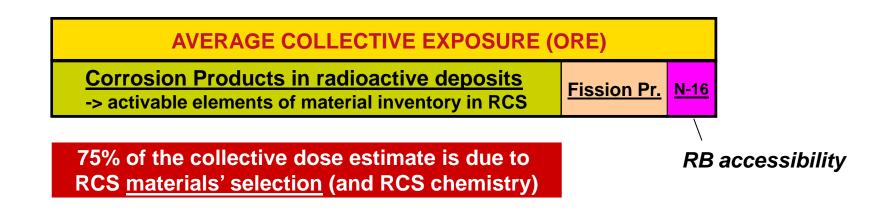
Radiation Protection at the Design Stages

► ALARA approach at the design stage of new plants <u>mandatory</u> as of beginning of EPR[™] Basic Design in 1995

- Based on ICRP publication 60
- National regulations
 - European level (Directive 96/29)
 - Member countries of reference plants (France, Germany)
- European Utility Requirements (EUR)
 - Material selection with low release rates
 - Justification of activable species (focus on Cobalt, Nickel)

Adaptation to other regulatory frameworks

- European countries (UK, …)
- Outside Europe (China, USA, …)


Second principle of "optimization" = ALARA design

SOME « EVOLUTIONS » WERE SMALL REVOLUTIONS IN DESIGN METHODOLOGY

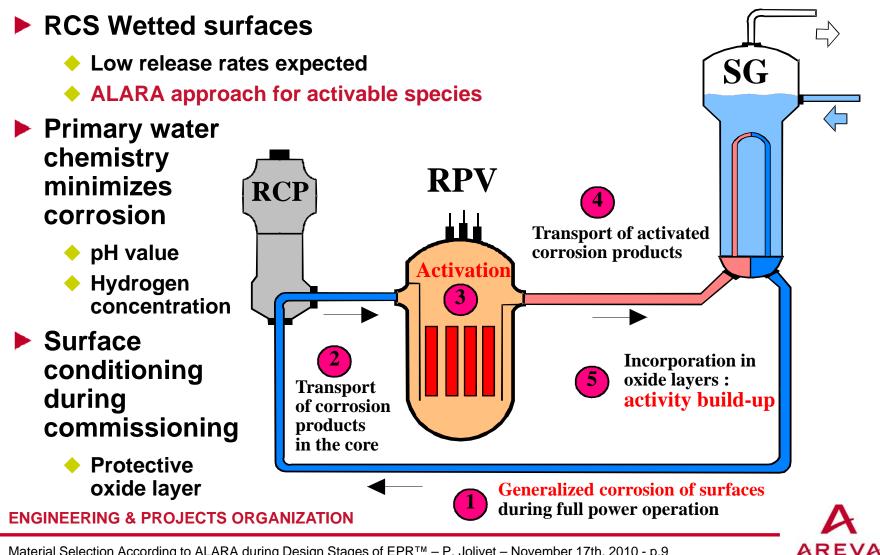
Several Radiation Sources: Where the Effort Should be Made?

► Contributions to ORE in EPRTM configuration

man-mSv/y

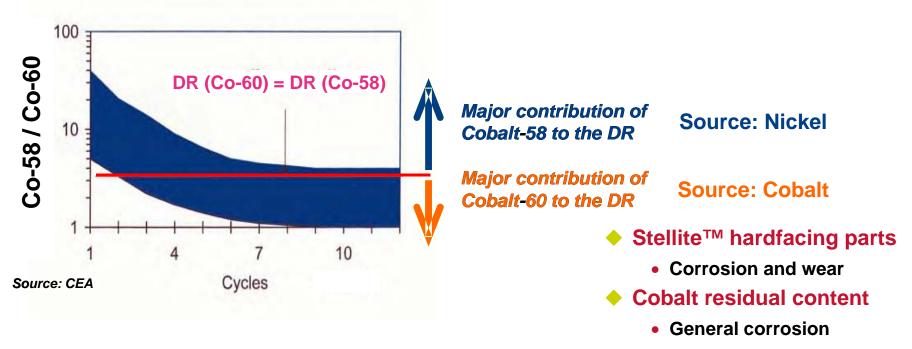
THE SELECTION OR EXCLUSION OF CERTAIN MATERIALS (INCLUDING IMPURITIES) IS <u>ONE ESSENTIAL ASPECT OF</u> <u>RADIATION PROTECTION AT THE DESIGN STAGE</u>

ENGINEERING & PROJECTS ORGANIZATION


Activity Build-Up on Primary Component Surfaces

1. Introduction

- 2. Activity Build-Up on Primary Component Surfaces
- **3.** Impact of Current EPR[™] Material Inventory on Primary Circuit Contamination
- 4. Are Further Improvements in Material Inventory ALARA?
- 5. Conclusion

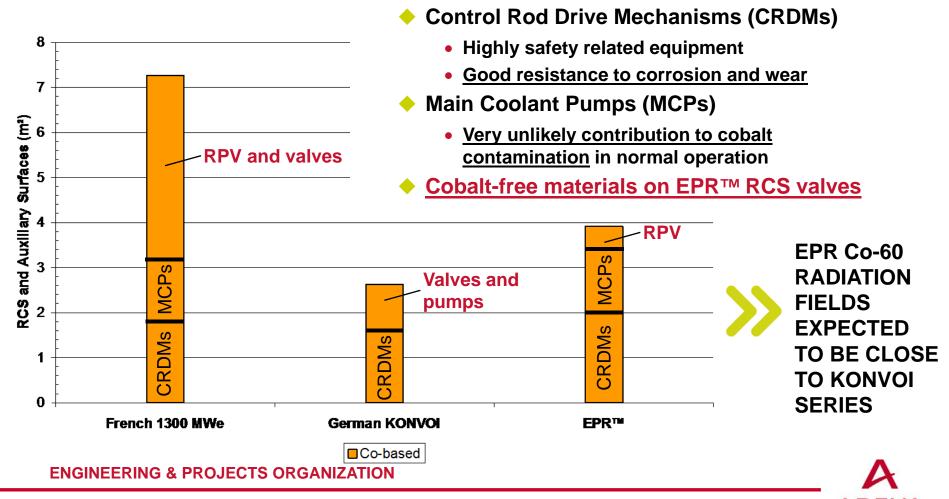


Activity Build-Up of Corrosion Products

Corrosion Product Contribution to RCS Dose Rates (DR) vs Time

Deposits of Co-60 and Co-58 are the dominant contributors to dose rates measured at the vicinity of empty contaminated piping and components

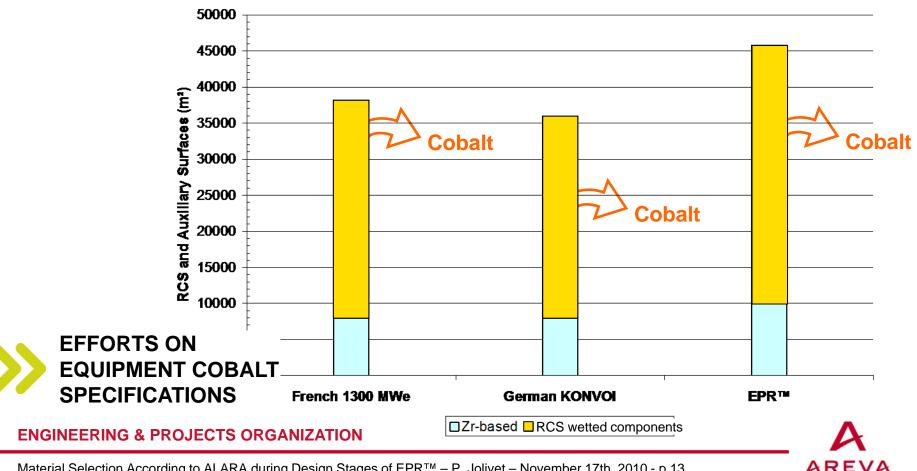
ARE


Impact of Current EPR[™] Material Inventory on Primary Circuit Contamination

- **1.** Introduction
- 2. Activity Build-Up on Primary Component Surfaces
- 3. Impact of Current EPR[™] Material Inventory on Primary Circuit Contamination
- 4. Are Further Improvements in Material Inventory ALARA?
- 5. Conclusion

Potential Cobalt-60 Sources from Stellite[™] Hardfacing Parts

Comparative Stellite[™] surfaces between EPR[™] and reference plants



ARE\

Potential Cobalt-60 Sources from Cobalt **Residual Content in Steels and SG Tubes**

► EPR[™] RCS component surfaces

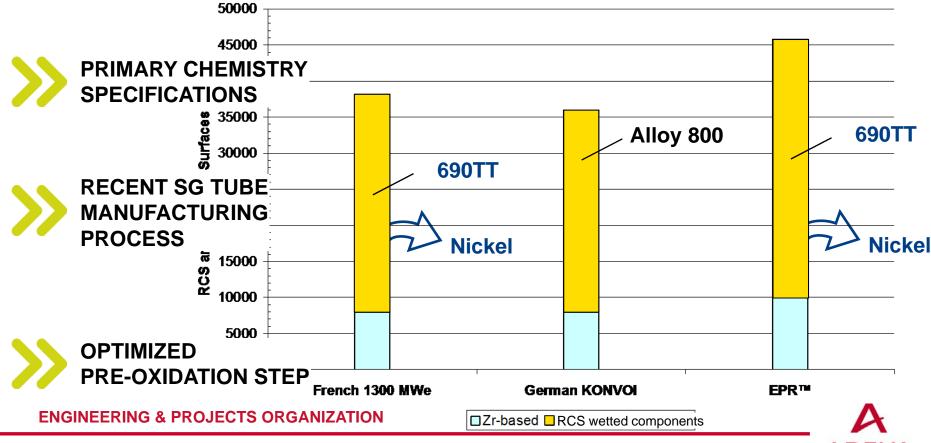
Larger surfaces on EPR[™] than on reference French and German series

ALARA Approach for Primary Components (RPV, Internals and Main Coolant Loops)

Consideration of industrial capabilities according to ALARA

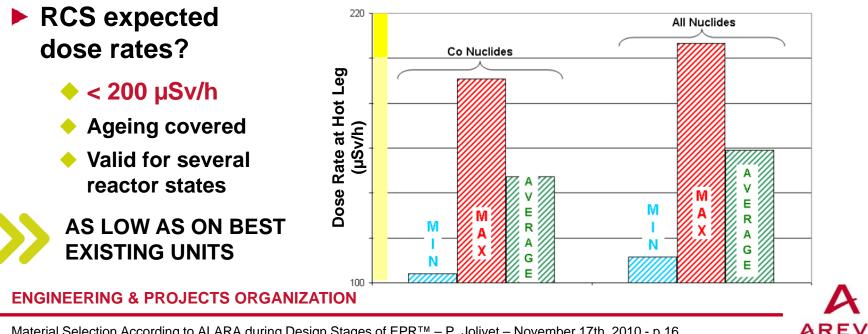
- Optimization of margins between equipment specifications of existing French reference plants (RCC-M) and Cobalt content measurements
- Costs from steel makers by additional selection of recycled materials
- Different industrial contexts depending on location in the world

Equipment/ Material	Cobalt residual content (%)	
	RCC-M requirement	EPR™
RPV internals (Stainless steel)	< 0.2 required, but < 0.1 expected	< 0.06
RPV and pressurizer stainless steel cladding	< 0.2	< 0.06
Main Coolant Lines and PZR surge line (Steel)	< 0.2 required, but < 0.1 expected	< 0.06
SG tubes (Alloy 690TT)	< 0.018	< 0.015


ENGINEERING & PROJECTS ORGANIZATION

Potential Cobalt-58 Sources from Nickel in SG Tubes and Steel Surfaces

► EPR[™] RCS component surfaces


Different choice for SG tubes than on reference KONVOI series (integrated decision)

Nickel potential release has to be mitigated by all ALARA means

EPR™ Expected Deposit Dose Rates?

- ► Given the current material inventory on EPR[™], RCS dose rates due to corrosion product deposits are assumed to be driven
 - By Cobalt-58, approximately 50%
 - By Cobalt-60, approximately 40%, due to decrease in Cobalt inventory
- Remaining 10% are due to radioactive Iron and Manganese
 - Silver and Antimony in bearings and gaskets are suppressed or avoided

Are Further Improvements in Material Inventory ALARA?

- 1. Introduction
- 2. Activity Build-Up on Primary Component Surfaces
- **3.** Impact of Current EPR[™] Material Inventory on Primary Circuit Contamination
- 4. Are Further Improvements in Material Inventory ALARA?
- 5. Conclusion

Continuous Improvement

Several design iterations have been performed during 15 years

- ◆ Already integrated optimization of current EPR™ material choices
 BUT
- Further design changes have to be considered anyway
 - ALARA approach should be continuously questioned by designers
 - Requests from Customers towards lower <u>potential</u> radiation sources
 - Different regulatory or Safety documentation can impose local rules
- Development of a calculation "decision-making" tool for Cobalt-60 potential sources
 - Wetted surfaces and material release rates/ wear
 - Component location (under/ outer neutron flux RCS/ auxiliary system)
 - Benchmark of the tool with in-situ Cobalt-60 activity measurements on reference plants

Design Changes Involving Cobalt Inventory

Impact on ORE expected in a range between negligible and some percents

- ◆ Less or no Stellite[™] in RPV internals: minus 2-3% on the total ORE
- ♦ No Stellite™ in CRDMs: minus 3-5% on the total ORE
- ♦ No Stellite™ in MCPs: negligible
- Lower Cobalt residual content in RCS steels : minus 5-6% on the total ORE

Industrial/ operational risks or sacrifices in comparison?

- Costs (e.g. generalized low cobalt content, less than 0.05% in steels, …)
- Absence of qualified Cobalt-free materials for some applications involving high design mechanical loads or severe transients
- Increased outage duration and personnel doses in case of early replacements
- Safety issue in case of safety equipment mechanical degradation

A CASE BY CASE ANALYSIS IS NECESSARY BEFORE IMPLEMENTING

Conclusion

- **1.** Introduction
- 2. Activity Build-Up on Primary Component Surfaces
- **3.** Impact of Current EPR[™] Material Inventory on Primary Circuit Contamination
- 4. Are Further Improvements in Material Inventory ALARA?
- 5. Conclusion

Conclusion


The current EPR[™] design follows the ALARA approach with regard to material selection

- Cobalt-free materials in all RCS valves
- ♦ Minimum Stellite[™] surfaces in RPV internals
- ♦ No corrosion and wear expected for remaining parts with Stellite[™] hardfacing
- Limitation of Cobalt residual content in primary components
- Avoidance of other potential corrosion product sources (Silver, Antimony)
- Complementary means are implemented to decrease doses ALARA
 - Primary chemistry specification
 - Latest SG manufacturing process ensuring low release rates of Nickel
 - Optimized pre-oxidation step during commissioning
- **EPR** will have low dose rates and ORE values close to best existing plants
- Other dose reduction measures have to be analyzed case by case

SOME CHANGES MIGHT BECOME MORE "REASONABLE" IN THE FUTURE

Thank you for your attention...

ENGINEERING & PROJECTS ORGANIZATION

Design Changes Involving Nickel Inventory

Change of the SG tube material from Alloy 690TT to Alloy 800?

- ◆ EPR[™] already has low ORE values between 0.35 and 0.5 man-Sv/y on average over 60 years
- On one hand, plants of existing fleets with Alloy 690TT as SG tube material already exhibit a good behavior regarding Nickel release and fulfill the above EPR[™] values of ORE
 - Primary chemistry
 - SG tube manufacturing process of recent plants follows the "state-of-the-art"
- On the other hand, occupational doses in the same range as for KONVOI units may be achievable with this design change

Industrial/ operational risks or sacrifices in comparison?

- International word-wide experience is in favor of Alloy 690TT regarding the number of Nuclear Power Plants in operation
- Suspicion of corrosion issues on Alloy 800 in certain chemical environments in the secondary side [international corrosion expert opinion]
- Cost of early SG repairs or replacement (outage duration, additional dose)