

Full System Decontamination – Sustainable Dose Reduction for Operating Nuclear Power Plants

Dr. Christoph Stiepani Chemistry Services 2010 ISOE International Symposium, Cambridge, UK 17-19 November 2010

Decontamination Typical Applications for BWRs and PWRs

BWR

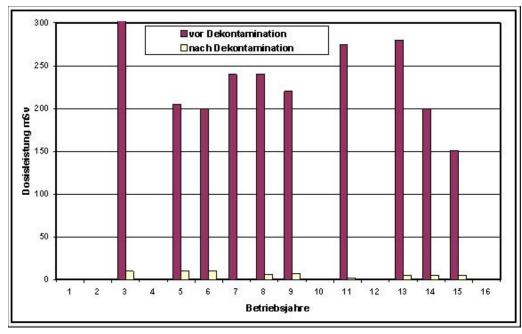
- **RWCU**
- ▶ Recirc
- ► Recirc pumps
- ► RHR
- ► Pool cooling system
- ► Full System Decontamination
 - Decommissioning
 - **▶** Operating NPPs

PWR

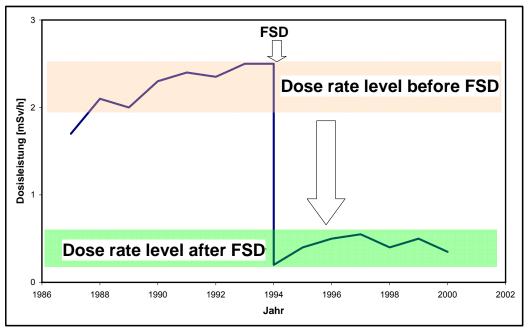
- **▶**RCP
- ► Reg. Heat exchangers
- **VCS**
- Pressurizer
- ► Pressurizer Spraylines
- ► Steam Generator (water chamber)
- ► Full System Decontamination
 - Decommissioning
 - **▶** Operating NPPs

Decontamination is today an approved procedure:

- ▶ Prior to repairs, inspections (NDE) and component replacement
- ► Target:
 - Local dose reduction at components and in working area
- AREVA NP Dose reduction for the scheduled measures


Examples for Man-rem Savings for Repairs / Maintenance / Replacements

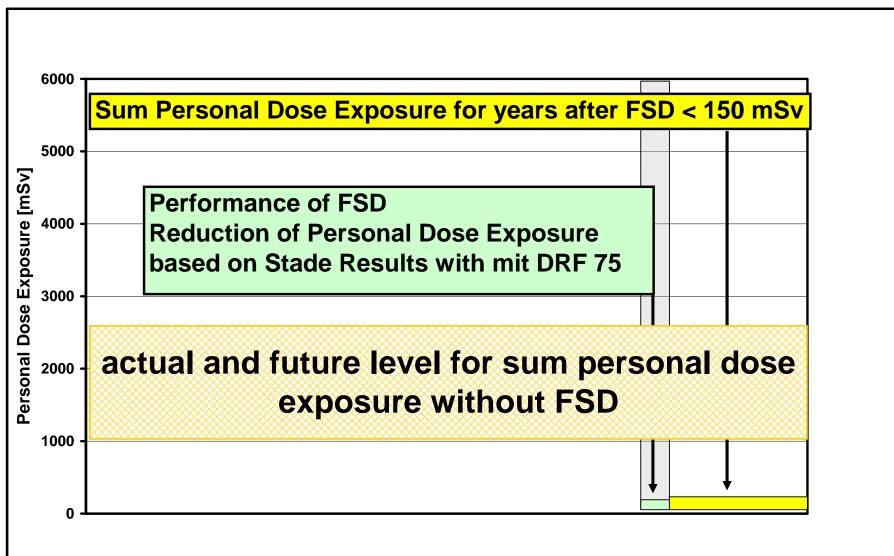
NPP	System/Component	DF	Year	Savings [mSv]
Oskarshamn 2	Recirc-Pump-Housing (in situ)	9	08/1991	400
Würgassen	Recirc-Loop		06/1991	2000
KWW	Recirc-Loop 20		06/1992	2000
BR3	FSD (Decommissioning)	10 to 60	05/1991	7500
Kahl	FSD (Decommissioning)	20 to 120	11/1993	2200
Oskarshamn 1	FSD	20 to 1000	01/1994	20000
Loviisa 2	FSD	14 to 153	08/1994	> 8000
Borssele	RHR	17	01/1997	438
1 Fukushima3	FSD	43 to 72	06/1997	70000
Laguna Verde 1	Recirc, RWCU	30	03/1998	5000
Krümmel	RWCU, RHR	20 to 103	07/1998	6900
Connecticut Yankee	FSD (Decommissioning)	15.7	07/1998	> 10000
1 Fukushima2	FSD	68 to 108	08/1998	140000
Sta. Maria de Garoña	Recirc-Loops	40.7	01/1999	780
1 Fukushima5	FSD	35 to 83	01/2000	50000


Recontamination after Decontamination is lower, with bigger Decon area and more removed Activity Inventory

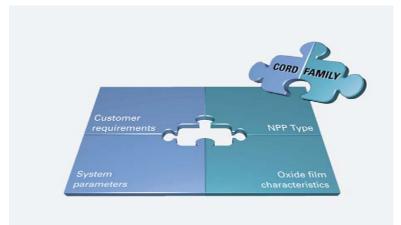
RCP: fast recontamination (shown with dose rates before Decontamination)

Siemens PWR

FSD: slow and low recontamination



VVER Loviisa 2


Personal Collective Dose with and without FSD High Potential for Sustainable Dose Reduction and Savings

Concept for Sustainable Dose Reduction based on Proven Technologies

HP/CORD® UV

 $AMDA^{TM}$

ESD

Build up Protective Layer

DZO (Depleted Zinc)

Coolant Chemistry

Shut down process

particles removal

HP/CORD UV und AMDA Proven and Reliable Decon Technology

1979 bis 1985	Development HP CORD UV & internal Siemens Qualification
1985	First RCP Decontamination in German PWR
1985-1986	Qualification TÜV Bayern
1986	First System Decontamination in German BWR
1988	Qualification TÜV Norddeutschland / TÜV Hannover
1987 bis 1994	150 System Decontaminations in Europe
1991	First PWR FSD for Decommissioning (BR3 Mol)
1993	First BWR FSD for Decommissioning (SWR, VAK)
1994	First FSDs in operating NPPs in BWR and PWR BWR, OKG 1 and PWR, Loviisa 2
1994 bis 1997	Qualification for Japan (all Designs) – MITI
1997 bis 2001	4 FSDs performed in Japan (BWR)
2004-2008	4 FSDs prior Decommissioning, 2 x PWR, KKS und KWO und 2 x BWR Barsebäck 1 und 2
2010	FSD PWR Grafenrheinfeld for operation
2011-2013	6 FSDs in preparation for operating NPPs (BWR & PWR) 1 FSD for Decommissioning

References for FSDs in Operating NPPs

AREVA NP References:

Oskarshamn 1	1994	442 MWe, BWR, ABB, Sweden
Loviisa 2	1994	445 MWe, VVER, AEE, Finland
1 Fukushima 3	1997	760 MWe, BWR, GE/Toshiba, Japan
1 Fukushima 2	1998	760 MWe, BWR, GE/Toshiba, Japan
1 Fukushima 5	2000	760 MWe, BWR, Toshiba, Japan
1 Fukushima 1	2001	460 MWe, BWR, GE, Japan
Grafenrheinfeld	2010	1345 MWe, PWR, Siemens, Germany

AREVA NP References for FSDs prior to Decommissioning – Principle similar to FSDs in **Operating** NPPs

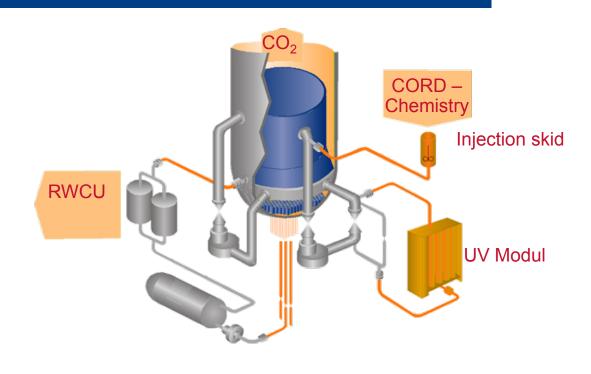
NPP	Country	Year	Design	OEM
BR3 MOI	Belgium	1991	PWR	WEC
VAK Kahl	Germany	1992/93	BWR	GE/AEG
MZFR Karlsruhe	Germany	1995	PWR, D ₂ O	Siemens KWU
Stade	Germany	2004/05	PWR	Siemens KWU
Obrigheim	Germany	2006/07	PWR	Siemens KWU
Barsebäck 2	Sweden	2007	BWR	ABB
Barsebäck 1	Sweden	2008	BWR	ABB

FSD OKG 1, 1994

2,3 E12 Bq Activity and 30kg corrosion products removed

IX-resin waste: 2,5 m³

Man-Rem Savings: 20000 mSv (customer data)


DF 20 upto > 1000; DRF > 10

Dose rate RPV bottom after FSD: 20 µSvh

Surface contamination < 4 Bq/cm²

RPV Inspection after Decontamination

Oskarshamn 1 – Decontamination Principle

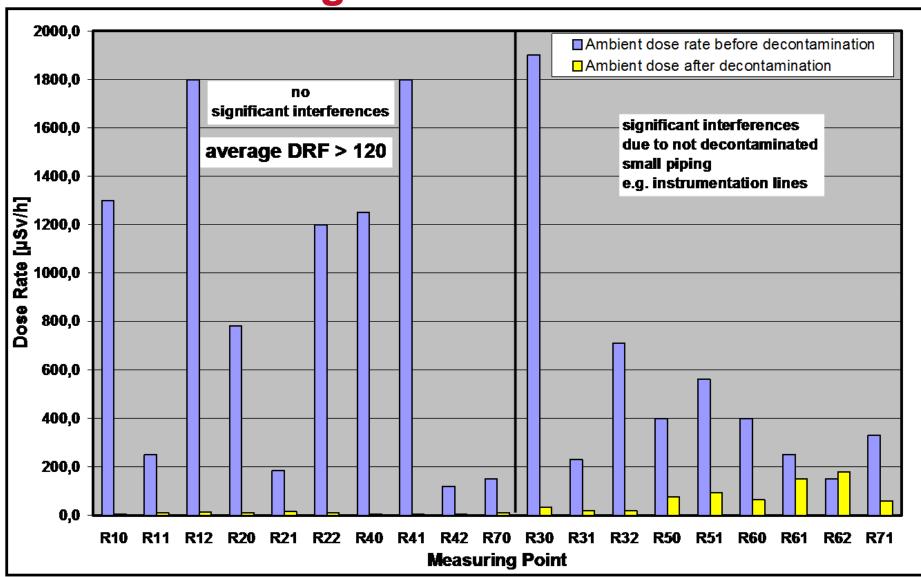
FSD in Siemens PWRs

Example FSD Stade prior Decommissioning Pressurizer Residual heat removal system (RHR) **Primary system** Reactor water cleanup system (RWCU) **AMDA** To reactor sump ₩ <6 bar <> 30 bar Volume control system (VCS) Letdown HX

<6 bar <>30 bar

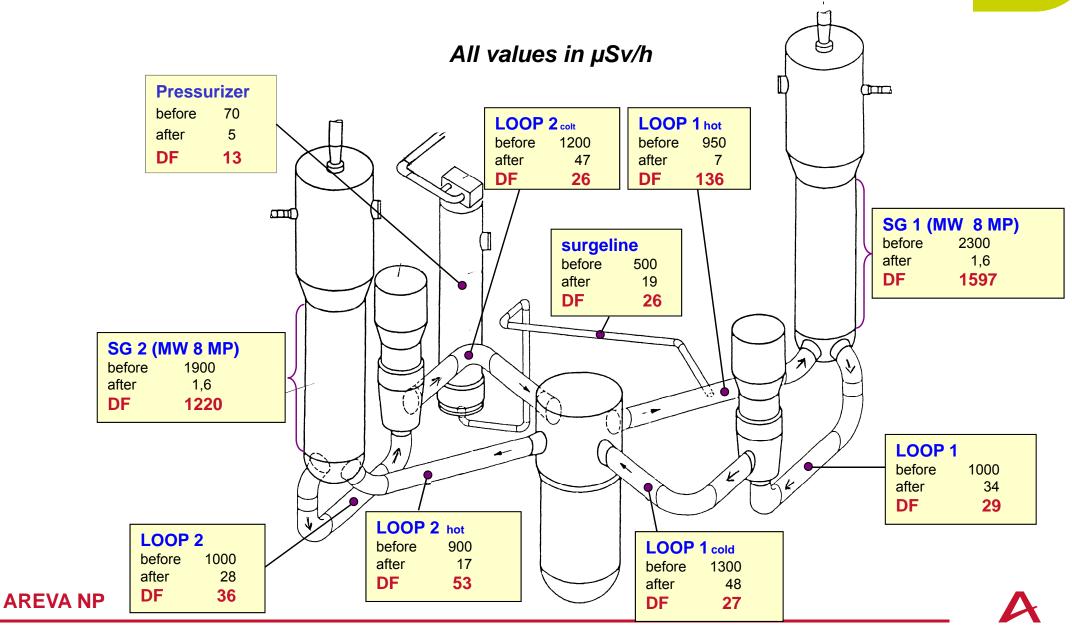
Volume control tank

To HEPA filter of exhaust air system

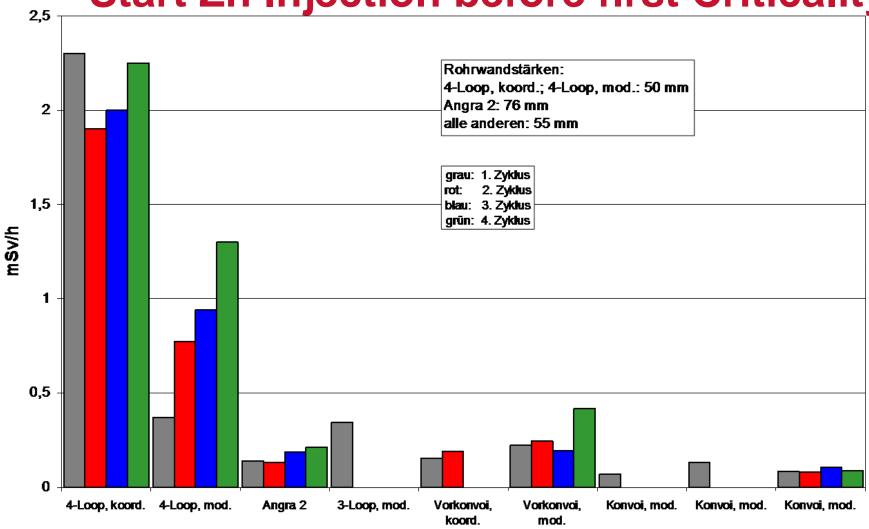

Coolant storage

Degasifier

from AMDA

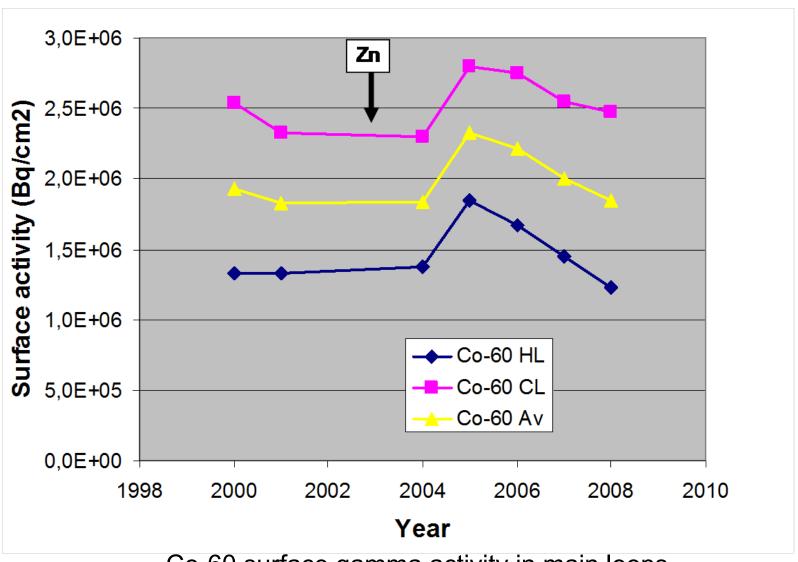

Seal water for RCP

FSD Stade High Ambient Dose Reduction

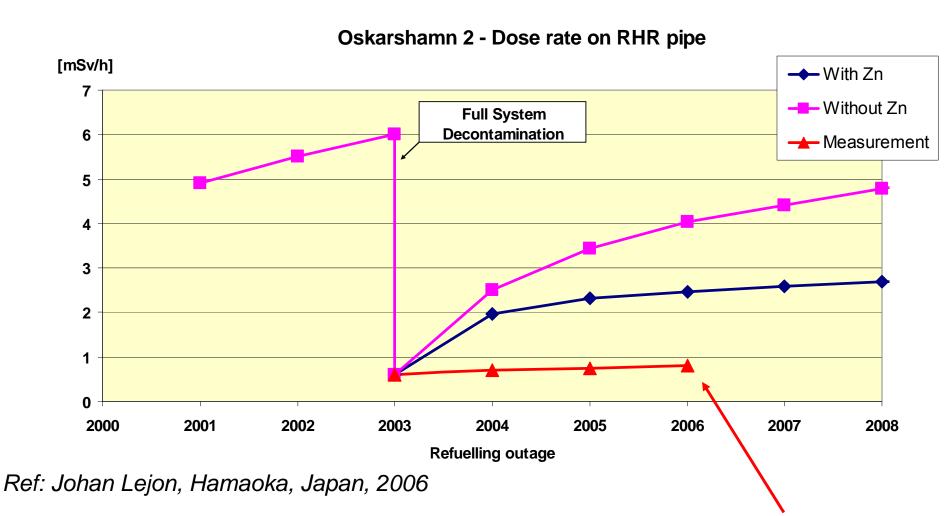


FSD Obrigheim Excellent Dose Rate Reduction Values

AREVA


Results Zinc Injection Start Zn Injection before first Criticality

Angra 2 Dose level today on low level, comparable with Konvoi NPPs


Results Zn Injection Start Zinc Injection after Several Cycles

Co-60 surface gamma activity in main loops

Example for Decontamination and Zn-Injection Sustainable Dose Reduction

Reality, measured dose rates much lower than estimates

Summary AREVA NP Concept for Sustainable Dose Reduction

- Concept is basing on proven technologies
 - HP/CORD UV
 - References
 - Material compatibility
 - Low waste volumes
 - AMDA
 - Proven and reliable technology since more than 30 years
 - FSD
 - Experiences and development for FSDs for decommissioning
 - References for FSDs in operating NPPs without negative experience during the following cycles (e.g. OKG 1 and Loviisa 2 now > 10 years in operation after FSD)
 - System integrity
- Protective Layer build up
 - References of new builds and for SG replacement
- Zn-Injection (DZO)
 - References
 - Before first criticality: NPP Angra 2
 - Implementation after several cycles: worldwide operating NPPs

Any reproduction, alteration or transmission of this document or its content to any third party or its publication, in whole or in part, are specifically prohibited, unless AREVA NP has provided its prior written consent.

This document and any information it contains shall not be used for any other purpose than the one for which they were provided.

Legal action may be taken against any infringer and/or any person breaching the aforementioned obligations.

Full System Decontamination – Sustainable Dose Reduction for Operating Nuclear Power Plants

Dr. Christoph Stiepani Chemistry Services 2010 ISOE International Symposium, Cambridge, UK 17-19 November 2010

