

Vessel Entry Dose Accountancy

Hinkley Point B and Hunterston B 2008 - 2009

Ian Goldsmith

Introduction

ISOE 2008 Publication

- 14 operating AGRs in UK
- Average collective dose of 167man.mSv
- >90% of total AGR dose due to VE

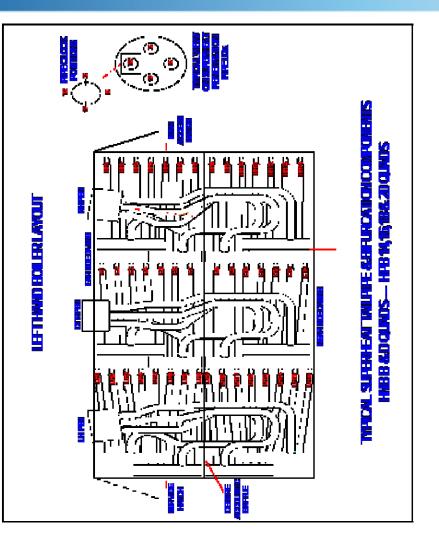
• 2008

- Hunterston B R3; 1004man.mSv, 1370 man entries, 372 individual entrants
- Hunterston B R4; 465man.mSv, 622 man entries, 204 individual entrants
- Hinkley Point B R4; 592man.mSv, 698 man entries, 205 individual entrants
- Total Collective Dose; 2061man.mSv, 2691 full man entries

• 2009

- Hinkley Point B R3; 636man.mSv, 697 man entries, 245 individual entrants
- Hunterston B R3; 492man.mSv, 684 man entries, 226 individual entrants
- Total Collective Dose; 1128man.mSv, 1381 full man entries
- Typically only in vessel for ~21 days / reactor

VERT

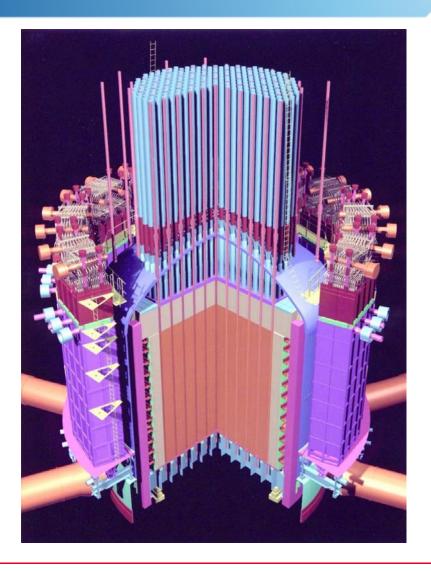

• Hunterston B and Hinkley Point B

- Advanced Gas-Cooled Reactors
- Generating since 1976
- Vessel entry allows for extension of plant working life
- Inspection and possible repair of all boilerwork components
 - 2 reactors at each site
 - 12 boilers in each reactor
 - Typically 44 inspection sites in each boiler

• Vessel Entry Repair Team

- Doosan Babcock Energy Limited
- British Energy
- Various other contracted companies
- Specialist trained entrants of various trades

• Inspection and repair of boilerwork


In-Vessel Conditions

• In Vessel Rad Conditions:

- Multiple sources; core, carbon'dust', activated metal work and foreign materials
- Typically min 0.4mSv/h gamma
- Typically max 5mSv/h gamma
- >10mSv/h gamma from discrete items

Conventional hazards

- Hazardous tasks; cutting, grinding, welding
- Working at height
- Confined spaces
- Up to 60 degrees Celsius
- Manual handling
- Dangerous plant
- Unavoidable dose burden

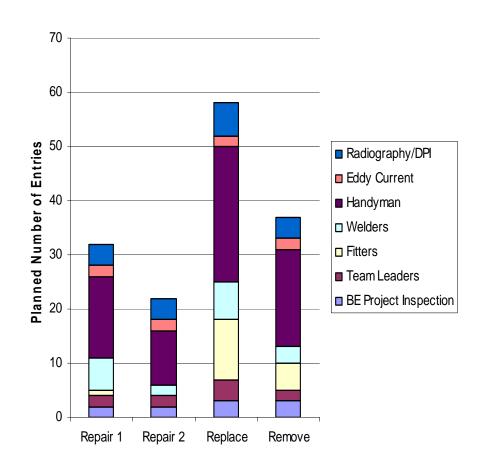
Dose Strategy

Business / corporate level

- Agreement of anticipated workscope and production of plan
- Resourcing
 - Skilled trades engineers, welders, fitters, radiographers
 - Fitness demanding and unforgiving conditions
 - Frame of mind anxiety and claustrophobia
- Training
 - Radiation workers
 - Orientation
 - Task specific practice / mock ups
- Employment paths / interim work

• Dose constraints / planning levels

- 2008 and 2009:
 - Max 9mSv / individual
 - Max 1.5mSv / entry
 - Site specific dose constraints depending on employment path



Dose Management - Planning

The main repair types:

- Top Secret!
 - Details are of commercial sensitivity
- Each repair type consists of a series of consecutive tasks
- Repair
 - First choice
 - Lowest dose option
 - Fewest entries required
 - Potential remote repair
 - Risk of failure leading to...
- Replace
 - Most significant action in terms of dose
 - Any dose spent on previous repair is now lost
 - Implications on campaign duration
- Remove
 - Implications on generating capacity
 - Still requires dose

6

Dose Management – Planning & Manning

- Each repair model is planned entry by entry
- Mutually beneficial workfaces
 - Can two short tasks be completed during the same entry
 - Can entries be planned so as to avoid difficult hose management
 - Can one Handyman support work in two boilers
 - Is it appropriate to carry out radiography alongside other work
- Can the shift supply adequate resource
 - For example, welding activities tend to fall on same shift:
 - Enough entrants to avoid 'dead' entry
 - Are all entrants trained in the specific tasks scheduled
 - Towards the end of a campaign, do they have the dose resource
- Reorganisation of shifts
 - Changing a shift loses a shift, potential for delay

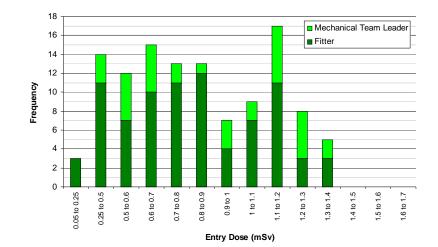
Night	Entry 20	Backout	Backout	Backout	Backout
Night	Entry 19	Inspect	Inspect	Inspect	Inspect
Dav	Entry 18		Verify		
Day	Entry 17	Verify			
	Entry 16	Fit Task 3	Fit Task 3		Verify
Night	Entry 15	FIL TOSK S	FIL LOSK S	Verify	
	Entry 14	Weld 2	Weld 2	Fit Task 3	Fit Task 3
Day Night	Entry 13			FIL LOSK S	FIL TASK S
	Entry 12			Weld 1	Weld 1
Day	Entry 11	Weld 1	Weld 1		
	Entry 10			Fit Task 2	Fit Task 2
Night	Entry 9			FIL TOSK Z	FIL LOSK Z
	Entry 8	Fit Task 2	Fit Task 2		
Day	Entry 7	The Fash 2		Fit Task 1	Fit Task 1
	Entry 6				
Night	Entry 5	Fit Task 1	Fit Task 1		
	Entry 4	·	, it rook i	Set Up	Set Up
Might	Entry 3			Oel Op	Sei Op
Day	Entry 2	Set Up	Set Up		
Day	Entry 1	Serup	Serop		
		Location 1	Location 2	Location 3	Location 4

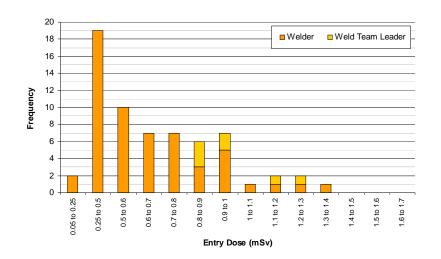
Dose Management – Control & Supervision

Vessel Entry Controller

- Experienced vessel entrant
- Based in a control centre
- Radio communications
- Access to CCTV, telemetric dose data
- Monitors in vessel conditions
- Responsible for each entrant;
 - Which routes to take to avoid dose rate hotspots
 - Low dose rate refuge locations
 - Workface stay times
 - When to exit
- Reports difficulties to Planning team

Technical Controller

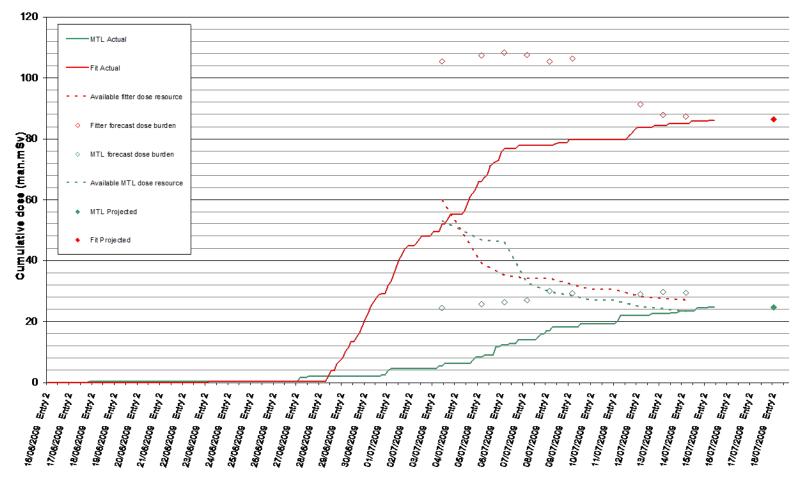

- Experienced trades person
- Knows the planned tasks for his trade team
- Talks entrant through step-by-step
- Manages difficulties as they arise to avoid abortion of the entry, and therefore wasted dose
- Reports progress to Planning team

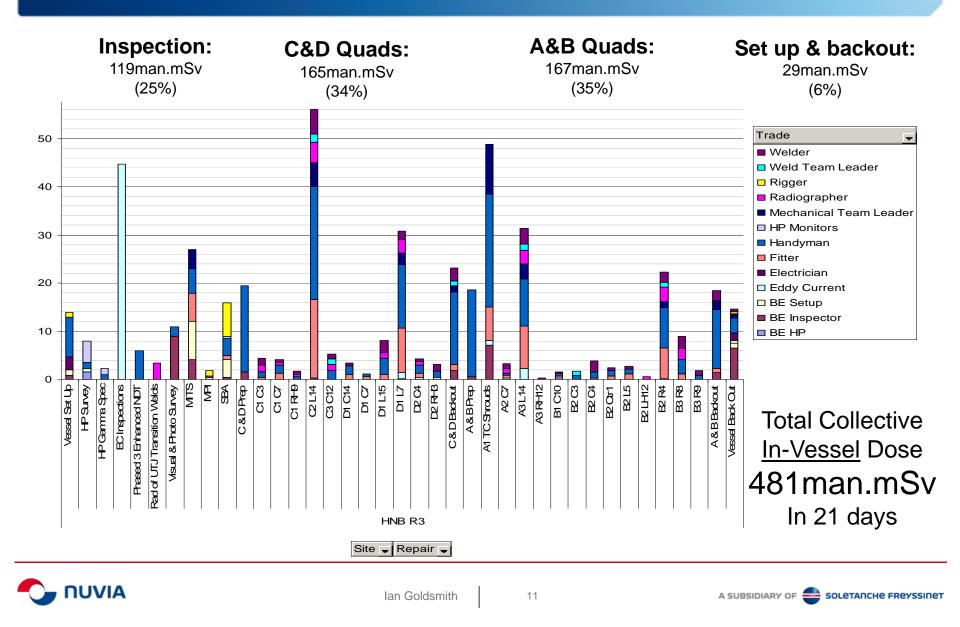


8

Dose Management – Measurement & Review

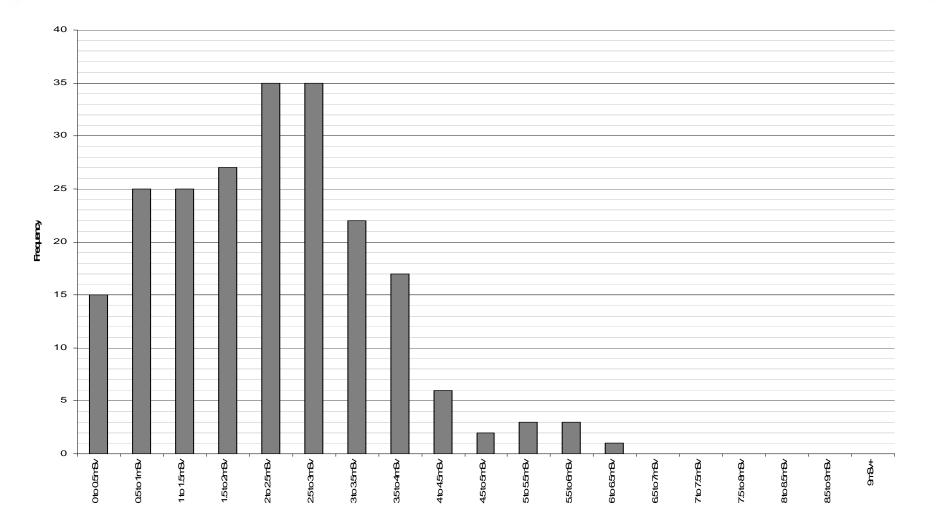
- Most tasks are trade specific
- Entry dose is dependent on task
 - Short discrete tasks
 - Fitting remote weld equipment
 - Movement/set-up of equipment
 - Continuous tasks
 - Manual weld
 - Cutting of multiple pipes
 - Multiple inspections / radiography
- Average dose per entry informs the entrant selection process
 - Is it appropriate to use high dose entrants before low dose entrants if we can show they will both finish equal
- Is the RRA appropriate
- This can be fed back into the plan to re-evaluate projected dose



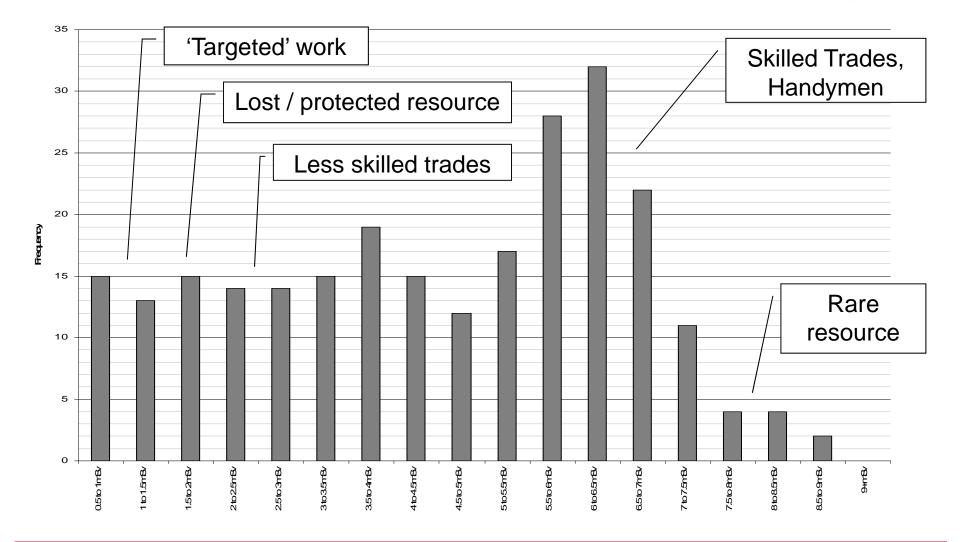

Dose Management – Measurement & Review

Dose Resource Tracker Mech Team Lead and Fitter Team

Dose Distribution by Phase – HNB R3 2009


Dose Distribution by Key Trade – HNB R3 2009

Trade	Entrants	Entries Made	Collective Dose	Average Dose / Entry	Typical Repair	Typical Replacement
			man.mSv	mSv	man.mSv	man.mSv
Inspection	12	88	63 (6%)	0.72	0	4.6
Fitter	25	181	152 (13%)	0.83	0.7	10
Welder	15	140	88 (8%)	0.63	1	3.2
Handyman	82	771	445 (40%)	0.58	1.5	13.4
Eddy Current	29	171	139 (12%)	0.81	0.1	0.9
Radiographer	31	119	77 (7%)	0.65	0.6	2.9
Total (including all trades)	255	1381 (full entries)	1128	0.81	35	4



Dose Distribution by Site – HPB R3 2009, 636man.mSv

Dose Distribution by Site – HPB R3 & HNB R3 2009, 1128man.mSv



Dose Sharing & Other Challenges

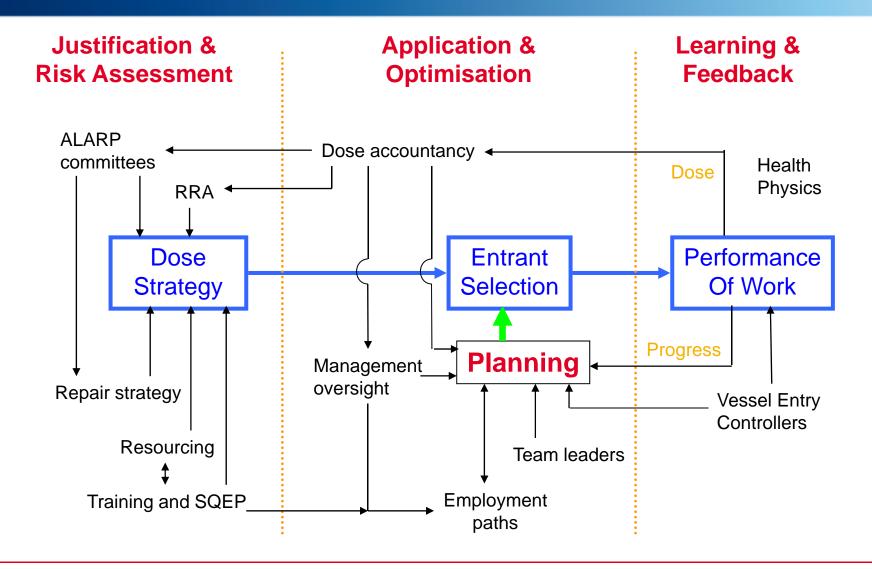
- Heavily dependent on Trade / skill set
 - Generally higher SQEP means more entries
 - New recruits must be blooded
- Steep profile means that even distribution is difficult
 - 15 42man.mSv/24hr
 - Typically 25man.mSv/24hr
 - Individual may only get 6 entries in a year
 - Low dose entrants might not be available for appropriate entry slot

Human performance

- Hose tangles
- Lost items
- Missing, wrong or defective equipment

Achievements

- Establishment of appropriate administrative controls and systems of work to allow safe exposure in demanding environment
- Systematic management of steep dose profile on every level
 - Corporate
 - Project
 - Team
 - Individual
- Ethical and proper dose expenditure

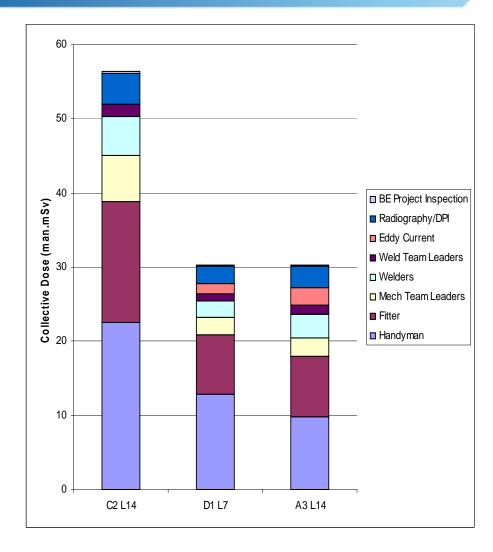

No breach of challenging constraints

- In 2 years and >3 man.Sv only one individual breached 9mSv, 9.1mSv
- No unplanned exposure
 - >4000 man entries
- No over exposure
- Completion of workscope!
 - Respect for radiation as a hazard should not in itself prevent progress

Dose Management – Summary

???

Dose Distribution by Repair


- A tale of three New-Bifurcation replacements
 - C2 L14 Inaccessible location
 - Flagged projected dose to exceed model
- Stats:
 - C2 L14: 56man.mSv
 - D1 L7: 30man.mSv

Solution

- Simple lessons learned
 - Tube spreading, investment in time
 - Entrant selection

Result was saved dose

- A3 L14:
 - Also inaccessible
 - 30man.mSv

