Browns Ferry Unit 1 Restart
Cobalt Reduction Plan Update

John Underwood
TVA-Browns Ferry Nuclear Plant
1/12/2005
Overview

- Review of unit 1 recovery and restart valve replacements, showed that cobalt reduction was not being actively pursued.
- A level B PER was initiated and a HIT was formed to improve the process on Unit 1.
- Units 2 and 3 also have a standing PER for increase of source term.
- EPRI and INPO were contacted to provide Industry experience in cobalt reduction.
- Hatch, Fermi, Quad Cities, and Limerick were identified as industry leaders in Cobalt reduction efforts.
- Plant Hatch cobalt reduction project manager provided a presentation to the HIT on their successful effort in the 1990’s.
- Using industry benchmarking, an overall cobalt reduction plan was developed and is being implemented.
- EPRI critique indicates that BFN1 plan is comprehensive and aggressive.
Cobalt in Perspective

- Cobalt-60 is the principle contributor to out-of-core radiation fields in both boiling and pressurized water reactors. A hard facing alloy trade name Stellite®, which has high cobalt-59 content, is identified as the primary source of cobalt-60 in reactors. Cobalt is released through erosion, corrosion, friction, and through debris left from work on components containing Stellite®. When cobalt is released in systems with a flow path to the reactor, it can become activated to cobalt 60. Cobalt-60 is a high energy gamma emitter with a 5.3 year half life. This contaminant plates out in plant piping systems and produces long term high radiation areas in the plant.

- 1 gram of cobalt-60 is equal to 1,132 Curies of radioactivity and as a point source (a metal sphere 6 mm in diameter) emits a radiation field of 1,500 R/hr at 1 meter.
Cobalt in Perspective

- Chemistry sampling on BFN operating units indicates 800 gm/yr of cobalt 59 is being inputted into the reactor via turbine blades, valves, control rod blade pins and rollers, jet pump components, and stellite® debris from maintenance activities.
- The majority of this is deposited on the fuel and vessel components. However, a portion is deposited on associated piping in the drywell and reactor building.
- Based on EPRI research, 70% of the dose accrued on BFN operating units is due to cobalt-60. This is equal to 330 man-rem for FY 04.
- For each gram of cobalt introduced into the reactor, $1000/yr of depleted zinc (DZO) injection into the feed water is required to suppress the deposition on plant piping systems.
- Less than 1/10th of a gram of cobalt-60 is removed during chemical decon of the drywell recirculation piping at a cost of $2 million.
Team Accomplishments:

- 74 valves containing stellite® will be replaced with non-stellite® material. 26 of the valves were identified with high impact by the team and 48 were identified by Design after the level B PER.

- 10 of the 74 valves have now been installed. The team is now monitoring to ensure completion.

- All Control Rod Blades on BFN 1 will be replaced with “cobalt free” i.e., <0.5% versions. The team was able to negotiate with the vendor to reduce the cobalt content of blade material from <0.05% to <0.02%. The team continues to monitor production of the blades.

- All Low Pressure Turbines will be replaced. The final stage blades will be flame hardened chrome moly last stage blades instead of stellite®. The team continues to monitor production of the turbines.
Team Accomplishments:

The team identified debris from work on cobalt containing components as a major cobalt contributor. Procedures were revised to install dams and barriers to ensure cobalt debris containment. Tools such as vacuums and cameras were purchased to enhance cleanup after valve maintenance. New valve lapping machines were purchased to improve work performance and reduce personnel time in radiation areas. X-Ray fluorescence technology was used to empirically identify elemental cobalt debris left after component work. Craft and Supervision were briefed on the problems associated with cobalt dust and fines. The technique tested during BFN 3 outage with initial analysis post outage showing lower soluble cobalt concentration in the reactor coolant system. The technique of smearing valve internals for elemental cobalt debris is now being used on units 1, 2, and 3 at BFN for the 18 systems with a flow path to the reactor vessel.

- Valve technicians were assigned to sample after component work to ensure component cleanliness and follow up on failures.
- Filter septa and resin. BFN 1 plans to install 10 micron condemn filter elements to increase cobalt removal. Resin being tested on BFN 2 is showing promise of increased cobalt removal.
Team Accomplishments:

- Design, Maintenance, Planning, Chemistry, and Radiation Protection procedures have been revised in order to enhance cobalt removal.

- 14 valves and 2 pumps with historical dose problems were processed by vendor to improve surface finish. Twelve reactor water clean up valves, 2 RHR valves, and 2 reactor water cleanup pumps were mechanically polished, electro polished, chromed, and pre-oxidized. This EPRI approved process provides a long term finish that minimizes cobalt plate out in valve bodies and seats.

- Reactor water cleanup heat exchangers, Recirculation piping, and Reactor water cleanup piping mechanically polished, electro polished, and pre-oxidized. This EPRI approved process will provide long term finish that minimizes cobalt plate out.
Where the team came up short:

- Condenser tubes were installed without requiring cobalt content certification. Material was tested after arrival and found to be cobalt free i.e., <0.5%, but contained 0.124 % cobalt. Lower cobalt levels could have been specified in the contract.

- Core Spray Testable check valves were installed without electro polishing, chrome, and pre-oxidation. These valves have historical dose from work performed. (PER 67558)

- The team was unable to get all valve vendors qualified for mechanical polishing, electro-polishing, chrome application, and pre-oxidation for stainless steel valves. This allowed some stainless steel valves that were already contracted to not receive the process.

- Three RHR valves were ordered with non-cobalt material, but were later changed to cobalt due to schedule and vendor inability to provide cobalt free material in time to meet schedule. (PER 69532)

- The Cobalt reduction initiative was not initiated at the onset of recovery effort. Additional improvements could have been made.
Still on the table:

- Jet pump wedges are approved for replacement with X-750 alloy, however budget issues have delayed the purchase at this time.
- BFN 2 once and twice burned fuel are scheduled to be used for startup of BFN 1. This fuel is believed to have 300 grams of cobalt on the cladding. Consideration is being given to either replace with all new fuel or cleaning the 108 bundles.
- Cleaning of the RPV bottom head. At this time consideration is being given to mechanically cleaning the RPV bottom head. The crud in the bottom head is believed to contain ~100 curies of cobalt-60.
- Water Management plan for Unit 1 to ensure Unit 2 & 3 do not cross contaminate. Review of past data from Units 2 & 3 indicate possible ties to increase cobalt in one unit from another due to cross ties of systems. Cross over of this water could undermine the program.
Still on the Table

- Mixed Waste issues from electro-polishing. In order for the industry to fully utilize electro-polishing on operating plants i.e. contaminated components, issue of mixed waste prevention must be resolved. The cost of disposal of hazardous and contaminated waste (mixed waste) is not economical for plants in the U.S. at this time. Processes are being utilized internationally to prevent the hazardous label on the waste, but have yet to be funded in the U.S. If this process is developed in the U.S. measures will be needed to ensure complete cleanup of chemicals in order to prevent plant chemical excursions. The benefits of this process would cover a wide array of issues from decontamination of chain falls and tooling to decontamination of valves and pumps. The cost and time of decontamination would be greatly enhanced if the mixed waste issue were ever resolved.
Still on the Table:

- Ability to monitor vendor work in reactor cavity and spent fuel pool. Grinding, welding, and cutting etc. work activities are performed in these areas from time to time by vendors. Certification of non-stellite® tools should be provided by these vendors. The possibility exists that crimping, cutting, grinding, etc. could provide additional source term to plants. At this time, in most if not all U.S. plants vendors are allowed to use tools of choice.
Still on the table:

- Replacement alloy for stellite® in the GL 89-10 program. Utilities have attempted to use NOREM®, Deloro®, and high grade stainless steels in these large gate and check valves with little success. Galling issues have been found using these alloys as replacements for stellite® in certain services.
Piping Electropolishing & PreOx
Finished Spool (Recirc Piping)
6 inch RWCU inlet valve body

As Received

Post Chrome Application

Post Electro polish
RWCU Regenerative Heat Exchangers

Electro polished
Tube Support Sheets
Spacer Rods
Typical Electropolished Heat Exchanger Tubing/Tube Sheet
24 inch RHR testable check valve

As Received

Post Chrome Application

Post Electro polish
RWCU Pump

As Received

Post Electro polishing

Post Cr Application
Stellite® 21 vs. Stellite® 6

The valve below was worked during BFN unit 3 cycle 11 outage. The “flaked” off portion of this valve is made up of Stellite® 6 which has been found to be more brittle than Stellite® 21.