Reduction methods of Cr and Co release from stainless steels in PWR and BWR

2009 ISOE North America ALARA Symposium
EPRI Radiation Protection Conference
January 13, 2009
Sumitomo Metal Industries, Ltd.
Hiroyuki ANADA
Kiyoko TAKEDA
Tetsuo Yokoyama
Background

- Co content of stainless steels and Ni base alloys
 - Co as impurity is one of major resources
 - EPRI; Restricted less than 0.05%
 - Issue; Reduce Co content ALARA

- Cr release
 - Corrosion of the stainless steels release Cr into coolant.
 - Decrease pH in the coolant with increasing Cr content in coolant
 - Absorbed Co ion on the surface resolved into the coolant
Objectives

- How to reduce Co content from stainless steels
 - Less than 0.02% without cost impact
 - Suitable raw material selection;
 - Scraps
 - hot metal from BF

- Pre-filming to feed water heater tubes
 - Protective oxide film, Cr-rich oxide layer, for Cr release into coolant
 - Selective oxidation of Cr in TP304L by control oxygen content during a heat treatment in a manufacturing process
Experimental Procedure -Material-

- **Material**
 - TP304L; Raw material selection, hot metal in addition to scraps
 - Extra-low Co content less than 0.02%

- **Pre-filming on inner surface of the tube, 15.9 mm dia.**
 - Laboratory test
 - Pre-filming by heat treatment in H₂ with slight amount of O₂ content controlled by dew point
 - Dew point: -10 to -50 deg.C in H₂
 - Application to feed water heater tube for BWR
 - Pre-filming applied to the actual manufacturing process

- **Diagram:**
 - Melting
 - Cold draw 15.9 mm dia
 - Pre-filming; Solution treatment >1000degC
 - H₂ environment adding H₂O
 - Selective oxidation of Cr
Experimental Procedure

- Characterization of pre-filming oxide
 - Color and Oxide morphology
 - Naked eyes and SEM
 - Oxide structure identified by XPS
 - Depth profile of the chemistries by Ar sputtering
 - Chemical state analysis

- Cr and Co release from the pre-filmed tube to coolant
 - Corrosion test in pure water
 - Refreshed type autoclave at 215 deg.C for 450 h
 - Cr and Co content in the test water was analyzed.
Extra-low Co content was achieved by controlling raw material without large cost impact

Japanese experience of application in LWR
- Feed water heater tube for Some Japanese BWRs

<table>
<thead>
<tr>
<th></th>
<th>This study</th>
<th>Conventional method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting</td>
<td>-Small amount of selected scraps</td>
<td>Selected pure scraps</td>
</tr>
<tr>
<td></td>
<td>-Hot metal, pure Fe from blast furnace</td>
<td>Large cost impact</td>
</tr>
<tr>
<td>Facility</td>
<td>-Combination of blast furnace and electric furnace</td>
<td>Electric furnace</td>
</tr>
<tr>
<td></td>
<td>-Suitable mixing, small cost impact</td>
<td></td>
</tr>
<tr>
<td>Co, %</td>
<td>Less than 0.02%</td>
<td>0.05%</td>
</tr>
</tbody>
</table>
Pre-filming oxide in the lab. test

- Thin oxide formed by heat treatment under controlled dew point in H₂

SEM images
Surface pre-filmed at -25degC
Depth profile of the pre-filming oxide

![Graph showing depth profile and composition analysis]

Composition, at %

- C1s
- O1s
- Si2s
- Cr-O
- Met.Cr
- Mn2p1
- Fe2p3
- Ni2p3

Surface vs Depth, nm
Structure of the pre-filming oxide

- Cr-Mn mixed oxide layer formed adjacent to the matrix.
- Fe$_2$O$_3$ or Fe$_3$O$_4$ layer formed at the surface of the oxide.

![Graph showing intensity and binding energy with peaks at different DP values and labeled regions for Fe$_2$O$_3$, Cr-Mn oxide, and TP304 matrix.]
Thickness of pre-filming

- Thickness of the pre-filming increase with increasing DP.
- Suitable pre-film thickness for will be selected easily.
- This might contribute to the effectiveness of the barrier layer
Diffusion of Co in oxide

- Diffusion coefficient of Co decrease with increasing Cr content in oxide.
- This suggests that Cr rich layer adjacent to the matrix acts as a protective film.

<table>
<thead>
<tr>
<th>FeO</th>
<th>Cr-Mn oxide (mainly)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(FeO and Fe, Ni)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TP304 matrix</td>
<td></td>
</tr>
</tbody>
</table>
Application of pre-filming for feed water heater tube

- **TP304L**
- **Pre-filming**
 - In H_2, DP=25deg.C
 - 1060 degC
- **Cr rich oxide layer**
 - 5 nm in thickness
- **Same condition as that for Higashi-dori plant**
Cr release from the tube

- Pre-filming
 - actual feed water heater tube.

- Cr release
 - Pre-filming reduced 25% of Cr release

- Applied to Higashidori BWR

Autoclave test; 215 deg.C
Experience of Japanese BWR

- Feed water heater tube in Higashi-dori BWR,
 - Jun-ichi Satoh, Proceedings of Thermal and nuclear power engineering society, p72-p73 October 23 2008, Sendai Japan
- Pre-filming technique contributes reduction of dose rate in the early stage of operation

Radioactivity, Bq/cm3

[Graph showing radioactivity levels over time with markers for Onagawa and Higashidori]
Conclusion

• Extra-low Co content TP304 tube was prepared and was pre-filmed to study the metallic ion release.

(1) The extra-low Co content less than 0.02% was achieved using by pure hot metal without large cost impact. This was effective for reducing Co release from the stainless steels both in BWR and PWR.

(2) Pre-filming on TP304 was effective for Cr and Co ion release from the feed water heater tubes to high temperature water. This was successfully applied for Higashi-dori BWR plant, and contributed to reduce the dose rate and to be No.1 plant in whole BWR
Future work

• Challenge to reduction of Ni release from steam generator tube for PWR.
 – Pre-filming technique using by oxygen potential control

Thank you for your attention!
Co release into coolant
Outline

• Background
• Objectives of this study
• Experimental procedure
• Result - fundamental study in laboratory test
• Result – application