

Field Application of CZT Detector for Evaluation of Radiation Source Term

decompressor are needed to see this picture.

Dr. David W. Miller, AEP D.C. Cook

Dr. Zhong He, PhD**, Nuclear Engineering Department, University of Michigan

2012 Asian ISOE ALARA Symposium, Tokyo, JAPAN September 24 - 25, 2012

Presentation Outline

- Introduction
 - EdF
 - INPO Event Notice
- Why CZT and Canberra Instrument?
- Radiation Measurement and Performance
 Metrics
 - Source Term Tracking
- CZT Benchmark Results
 - First Field Trial Turkey Point 3R22
 - DC Cook-1,2
- 3D CZT

INPO Event Notice, July 5th 2011 Inadequate CRE Improvements

- "During the past five years, the trend for reducing collective radiation exposure (CRE) has not been acceptable.
 - Several units remain well over the current industry CRE goal and have not made significant progress toward reducing collective dose.
 - The boiling water reactors as a group did not meet the 2010 CRE annualized cycle dose goal of less than120 person-rem"
- "Two major causes of high collective dose were
 - elevated radioactive source terms and
 - shortfalls in outage dose reduction planning and work execution."
- 2010 AFIs Revealing Weaknesses
 - Source Term Management
 - Outage Dose Reduction Planning

Électricité de France (EDF) Leadership

- Equipment and MethodDeveloped by Commissariat à l'énergie atomique (CEA)
 - Licensed to Canberra
- EdF Plant Aging Program
 - Deployed to all 58 EdF Nuclear Plants
 - Standard Protocols Measurements ALL RFOs

• Purpose:

- Source Term Changes
- EPD's and Instrument Cal
- ALARA
- Effective Dose Equivalent
- Component Degradation

AEP AMERICAN Dose Reduction Actions

What is CZT? Cadmium Zinc Telluride (CZT) Gamma Spectroscopy

- New Gamma Spectroscopy Technology
 - Identifies Isotopes in Energies between 100 keV to 1800 keV
 - Isotopes ID for NPP:
 - Co-58, Co-60, Ag-110m, Cs-137, Sb-124 &122, Cr-51, Fe-59, Mn-54, Zn-65
- Small and Lightweight
- Portable
- Cost Effective
- No Cooling Required
- Refueling Outages
 - 2 day Measurement
 - 2 day Analysis

Operating Characteristics

- No Cooling Required
 - Therefore no risk of having the detector compromised because of a lack of adequate cooling
 - The resolution is sufficient for determination of key power plant radioisotopes,
 - cobalts and cesiums, as well as Fe-59, Zn-65 and radioiodines
- For power plant operations, the ability to have a hand held, easily positioned detector is a premium
 - spaces are tight, or
 - positioning is difficult due to pipe placement, shielding, or
 - other equipment is challenging the operator's ability to perform quality measurements.

CZT Device and Analysis Energy Fluence vs. Deposited Activity

- CZT Output:
 - Gamma Energy Emission
 - Isotopic Identification
- Needs
 - Pipewall thickness and diameter
 - Insulation material, if any
 - Station ion chamber results
- Energy Fluence Rate
 - MeV/photon
 - Worker Energy Field
- Results from MicroShield output,
 - Deposited activity in mCi/cm2
 - Dose contributions from each radioisotope
- Energy Fluence Rate ≠ Deposited Activity
 - Co-58 Attenuation ~ 20% to 25% by Pipewall

Benefits: Strength Added to RP and Chemistry Programs

- Source Term Reduction
 - Tracking Performance RFO to RFO
 - Sister Plant Comparison
 - Including 58 EdF Units
- Dosimetry
 - Electronic Dosimetry
- ALARA
 - Shielding
 - Areas Identified for Dose Reduction
- Instrument Calibration
- Component Aging
 - Isotope Signature

Canberra CZT Gamma Spectroscopy Field Trials

- Origins at CEA and EdF in France
 - All EdF sites Have CZT Instrument, 58 units
- Needed to Trend and Track Source Term Reduction
- NPE/Bartlett Nuclear Field Trials and Measurements
 - 2005 Turkey Point-3R18- Was First
 - 2010/2011/2012
 - DC Cook U1C23 DC Cook U2C19
 - Braidwood A1R15
 - Beaver Valley 1R20

Nine Mile Point-1

• Surry-1

Braidwood A2R15 Beaver Valley-2R15 VC Summer R19 Turkey Point 4R26 Kewaunee North Anna Turkey Pt 3R27

- Utility Initiated Field Trials
 - Byron-1R17 Dresden Peach Bottom
 - Quad-Cities DC Cook 2C20
- Duke (McGuire/Catawba?)

How CZT Field Results Are Used to Benchmark Performance

CZT Results - Benchmarks Co-58 SG Hot Leg Piping Deposited Activity

CZT Co-58 SG Hot Leg Pipe Deposition Results [μ Ci/ cm2]

CZT Results - Benchmarks Co-60 SG Hot Leg Piping Deposited Activity

CZT Co-60 SG Hot Leg Pipe Deposition Results

AEP AMERICAN ELECTRIC POWER

Data Sharing Through ISOE North Amercian Technical Center

- Standardized EDF Protocol
 - Being Implemented in US NPP
 - AEP and Exelon Taking US Leadership.
 - Exelon committed to the process over the next 4 years as an assessment tool for determination of source term reduction success. Others above following suit.
- IAEA/ISOE Data Base
 - Director, Dr. David Miller
 - NATC MOU for Data Upload EdF and US NPP
 - Permits Comparison of Plant Performance
 - Different Source Term reduction strategies and their impacts are measured promptly!

New Development on Polaris 3D Gamma-Ray Imaging Spectromet

662 keV

0 keV

Number of photons: 2033

Performance Goals: $\Delta E/E \leq 1\%$ FWHM(at 662 keV)Real-time γ Imaging+ isotope I.D.

Eighteen 2×2×1.5 cm³ CdZnTe detectors (108 cm³, 648 grams = 1.43 lb)

Polaris # I

¹³⁷Cs Energy Spectra of the 2nd Polaris system

(From all 18 detectors of Polaris, 24°C, uncollimated ¹³⁷Cs)

²²⁸Th Energy Spectra Polaris-2

Real-Time Combined Coded Aperture and Compton Imaging for Locating Sources

Single-Pixel ¹³⁷Cs Spectrum of CdZnTe #4E-1 (121 Pixels)

Seven best Redlen, Inc. detectors: Single-pixel $\Delta E/E \leq 0.6\%$

Conclusions

<u>Conclusions</u>:

(1) High resolution (<1% FWHM for single pixel events, ~1.3% FWHM for all events) and high relative efficiency (>30%) 3-D CdZnTe γ -ray imaging systems have been developed and operated by independent operators ~2 months in Nevada & ~2 months in Oak Ridge National Laboratory.

(2) The Polaris project funded by DTRA has enabled Redlen to produce $2 \times 2 \times 1.5$ cm³ CZT detectors commercially.

(3) Further performance improvements, such as \rightarrow 0.5% FWHM energy resolution, are achievable.

Initial Measurement of Reactor Cavity Optical Image Gamma-Ray Image

Zoom-View: Optical Image

Co-60 (1333 keV) Image Overlay

Nb-95? (766 keV) Image Overlay

Co-58 (811 keV) Image Overlay

Mn-54 (834 keV) Image Overlay

H3D Detector: Second Cavity Measurement

- Energy spectrum after a 35 minute measurement on the opposite edge of the cavity
- At the new angle the intensity of all isotopes has decreased relative to N-16

Second Exposure of Reactor Cavity Optical Image Gamma-Ray Image

Zoom-View: Optical Image from New Angle

Co-60 (1333 keV) Image Overlay

Nb-95? (766 keV) Image Overlay

Questions?

