

Radiation Protection at Decommissioning Stage

2012 ISOE European Symposium

R. Buckermann AREVA NP GmbH / PEPA-G Prague, 2012/06/21

Content

- Introduction
- Radiation protection planning for decommissioning of highly activated or highly contaminated systems
- Example: Calculations for dismantling and packaging of reactor pressure vessel (RPV) parts
- Conclusion

AREVA NP

All rights are reserved, see liability notice.

Introduction

Introduction

Initial situation

- High activity inventory of RPV and primary circuit
- Activation products define local dose rates (gamma)
 - In work locations
 - Within casks

Specification of radiological boundary conditions for

- Permission by authorities
- Technological planning (ALARA, shielding, process decisions, …)
- Decommissioning and waste concept

AREVA NP

AREV

Introduction (2)

Necessity

- Definition of activities of RPV, RPV internals, bio shield
- Definition of activation / contamination of components (SG, RC pumps and piping)
- Definition of airborne and medium contained activities in buildings, on plant site

Radiation protection planning for decommissioning / back fitting of highly activated or highly contaminated systems

Radiation protection planning for decommissioning / back fitting of highly activated or highly contaminated systems

- Determination of local dose rate
- Planning of shielding incl. shielding calculations
- other RP measures
- Planning of survey
- Scheduling
 - Iabor time scheduling
 - employment of staff
 - tools, especially remote controlled tool
- Optimization of labor und RP measures

ility notice.

AREVA NP

Radiation protection planning for decommissioning / back fitting of highly activated or highly contaminated systems

AREVA NP has performed

- More than 10 plant SG replacements
- More than 3 plant RPV nozzle exchanges
- Dismantling of RPV and RPV internals

Example:

Calculations for dismantling and packaging of RPV parts

Motivation:

- Handling of cut segments (shielding, distance, time)
- Container type / disposition
- Minimization of number of containers
- Limits for activity inventories and dose rates due to repository conditions

Actions:

AREVA NP

- Calculation of nuclide specific activity inventories of cut segments und filled containers
- Calculation of local dose rates at work shops for handling these segments
- Calculation of local dose rates outside container
- co-operation with cut planning and packaging to optimize filling of containers (minimization of number of containers)
- Documentation: Planning, measurement schedule, check lists

Radiation protection at decommissioning stage - ISOE Symposium 2012/06/20.-22., Prague $\rm p.11$ R. Buckermann, AREVA NP GmbH / PEPA-G

AREVA NP

Radiation protection at decommissioning stage - ISOE Symposium 2012/06/20.-22., Prague p.12 R. Buckermann, AREVA NP GmbH / PEPA-G

AREN

Main dismantling methods

- Cut with band saw
- Water abrasive suspension cutting process
- Final storage of cut segments
 - **Containers on-site**
 - Limits for Containers
 - Total mass
 - Total activity (depending on type of Container)
 - Dose rate (contact, 2 m distance)

Cylindrical part

AREVA NP

AREV

Illustration of the iterative procedure for the packing

AREVA NP

Radiation protection at decommissioning stage - ISOE Symposium 2012/06/20.-22., Prague p.14 R. Buckermann, AREVA NP GmbH / PEPA-G

Cut concept and geometrical input

AREVA NP

more than 250 cut segments

Radiation protection at decommissioning stage - ISOE Symposium 2012/06/20.-22., Prague p.15 R. Buckermann, AREVA NP GmbH / PEPA-G

Cut pieces (examples)

cylinder segment: nozzle:

side view

Radiation protection at decommissioning stage - ISOE Symposium 2012/06/20.-22., Prague p.16 R. Buckermann, AREVA NP GmbH / PEPA-G AREVA

AREVA NP

Model

Container with cut segments

1600

Packing concept

AREVA NP

Radiation protection at decommissioning stage - ISOE Symposium 2012/06/20.-22., Prague p.18 R. Buckermann, AREVA NP GmbH / PEPA-G

All rights are reserved, see liability notice.

AREVA

Overview of more complicated loading

In total 26 different models were developed for all cut segments which had to be packed.

The radiological quantities of all final packages are below limits.

AREVA NP

Radiation protection at decommissioning stage - ISOE Symposium 2012/06/20.-22., Prague p.19 R. Buckermann, AREVA NP GmbH / PEPA-G

AREVA

Example:

AREVA NP

Side view

Top view

example values

	Dose point 1		Dose point 2		Dose point 3		Dose point 4		Dose point 5	
	contact	2m								
	µSv/h	µSv/h								
calculated	386	16	9	1	9	1	253	37	437	63
measured *	200	10	5	<1	5	<1	270	28	410	30
calc./meas.	1,9	1,6	1,8	1,0	1,8	1,0	0,9	1,3	1,1	2,1

Measurements confirm calculation results!

Radiation protection at decommissioning stage - ISOE Symposium 2012/06/20.-22., Prague p.20 R. Buckermann, AREVA NP GmbH / PEPA-G

Conclusion

Conclusion

- RP of great importance for back fitting / decommissioning
- AREVA has performed comprehensive tasks for back fitting / decommissioning
- Example for RPV has been given

AREVA NP

- Radiological assessment demonstrated the compliance of final packages with storage requirements
- Measurements confirm calculation results
- Radiological assessment is an important contribution to the minimization of the number of containers

66

Any reproduction, alteration or transmission of this document or its content to any third party or its publication, in whole or in part, are specifically prohibited, unless AREVA NP has provided its prior written consent.

This document and any information it contains shall not be used for any other purpose than the one for which they were provided.

Legal action may be taken against any infringer and/or any person breaching the aforementioned obligations.

AREVA NP

End of Presentation

Radiation Protection at Decommissioning Stage

R. Buckermann AREVA NP GmbH / PEPA-G Prague, 2012/06/21

