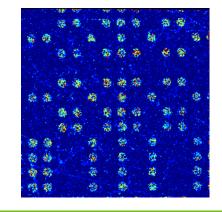


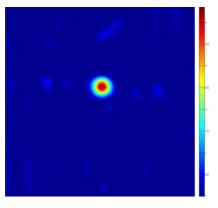
CANBERRA

energie atomique · energies atternativ

GAMPIX: a new generation of gamma camera for hot spot localisation


<u>F. CARREL</u>⁽¹⁾, R. ABOU KHALIL⁽²⁾, P. BLOT⁽²⁾, S. COLAS⁽³⁾, M. GMAR⁽¹⁾, F. LEMASLE⁽²⁾, N. SAUREL⁽³⁾, V. SCHOEPFF⁽¹⁾, H. TOUBON⁽²⁾

frederick.carrel@cea.fr


⁽¹⁾ CEA LIST, F-91191 Gif-sur-Yvette, FRANCE

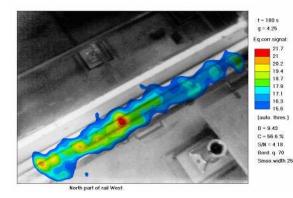
⁽²⁾ AREVA Canberra, FRANCE

⁽³⁾ CEA, DAM Valduc, F-21120, Is-sur-Tille, FRANCE

ISOE Conference, 17–19 November 2010, Cambridge

Context / State of the art

- □ The GAMPIX gamma camera: main characteristics
- Experimental performances obtained in laboratory
- Results obtained in CEA DAM Valduc
- Results obtained in Canberra Loches
- Conclusions and future developments


□ What are the main needs during dismantling operations?

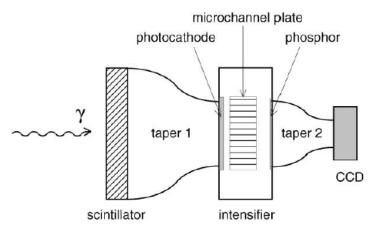
- Reduce the dose received by operating people (ALARA principle)
- Optimize the dismantling procedure
 - Reduce the volume of wastes
 - Minimize the cost of distmantling

U Why is gamma imaging a powerful technique?

> Superimposition of a gamma image with a visible image

Locate radioactive hot spots inside a given area

Need for performing gamma cameras



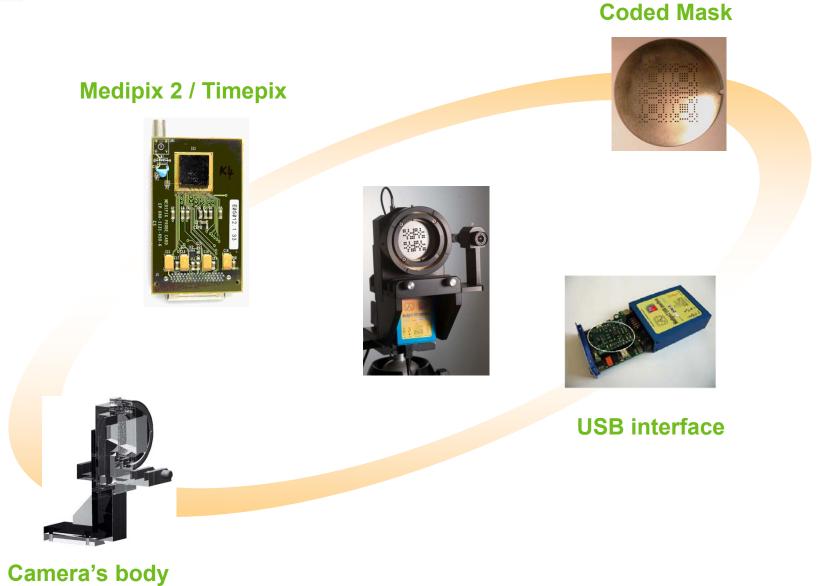
State of the art

energie atomique + energies atternatives

□ CARTOGAM: an industrial standard

Developed by **CEA**⁽¹⁾, industrialized by **AREVA CANBERRA**

Performing but:	 Sensitivity has to be improved at low-energy Weight is too high for a portable use 	
	Improve the interface	

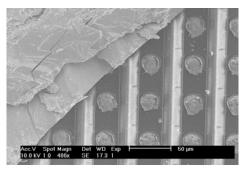

⁽¹⁾ O. Gal et al., Nucl. Instr. and Meth A 460 (2001) 138

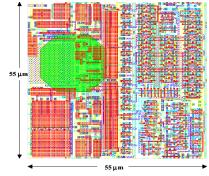
GAMPIX: a new generation of gamma camera

energie atomique • energies atternative

CANBERRA

cealist




CANBERRA

energie atomique - energies alternatives

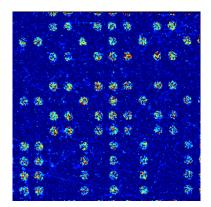
□ Medipix2/Timepix: the GAMPIX's heart

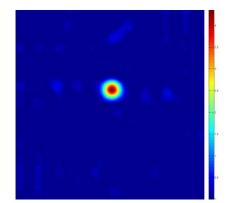
- Matrix of 256 x 256 pixels (side 55 μm)
- Hybridization with CdTe (thickness 1 mm)
- Direct conversion from gamma-ray to electrical signal
- Developed by CERN, commercialized by XIE

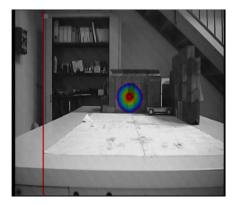
MURA coded mask: a multi-pinhole collimator

- Great improvement of the sensitivity in comparison with a pinhole
- Need for a decoding step
- Optimization of the coded mask (thickness/rank) for a dedicated application

□ USB interface: highway to flexibility




Take your laptop and use GAMPIX!



energie atomique · energies alternatives

□ Principle of gamma imaging using GAMPIX

Raw gamma image

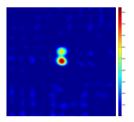
Decoded gamma image

Superimposition gamma image / visible image

□ What are the main benefits of GAMPIX?

- Low weight (~ 1 kg)
- High sensitivity
- Plug-and-play system

energie atomique - energies atternative

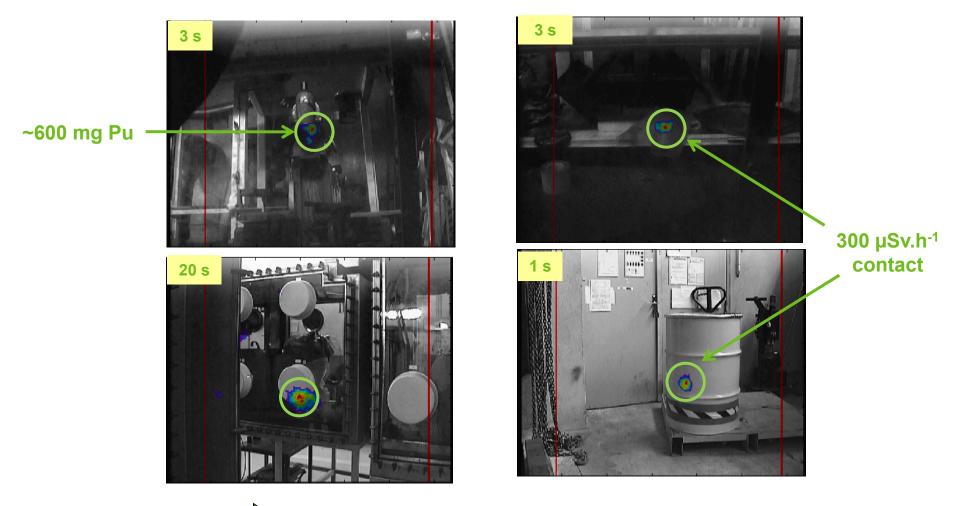

Sensitivity: current performances

Source	Dose rate@1 m (µSv.h ⁻¹)	Minimal counting time	Optimal for ²⁴¹Am
²⁴¹ Am	0.25	1 s	
¹³⁷ Cs	2.50	20 s	
⁶⁰ Co	3.84	60 s	
			Con he immed

Can be improved (thicker substrate, high voltage)

□ Angular resolution for a FOV of 30°

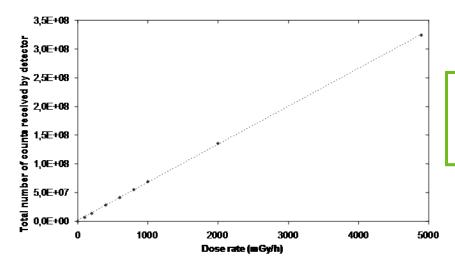
Source	Coded Mask Rank 13	Coded Mask Rank 11
²⁴¹ Am	1.38°	2.12°
¹³⁷ Cs	1.35°	2.06°
⁶⁰ Co	-	2.57°


CANBERRA

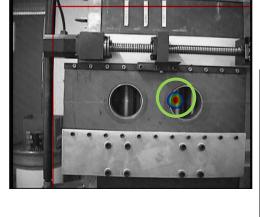
The greater the rank of the mask, the better the angular resolution

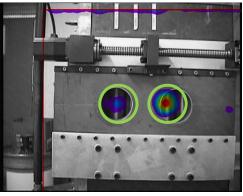
energie atomique + energies alternatives

□ Results obtained during dismantling operations in CEA DAM Valduc


Fast and accurate localization of plutonium hot spots

ISOE Conference, 17–19 November 2010, Cambridge


nergie atomique + energies alternatives


Experimental results obtained in Canberra Loches

Linearity of the signal according to the dose rate (evaluated from 100 mGy.h⁻¹ to 4.895 Gy.h⁻¹)

Results obtained in the Canberra's irradiator (¹³⁷Cs sources)

CANBERRA

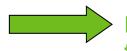
Industrial transfer

nergie atomique • energies alternative

CANBERRA

- Signature of the industrial transfer agreement is coming very soon
- Future GAMPIX's product manager: Roger Abou Khalil

[roger.aboukhalil@canberra.com]



Conclusions

- GAMPIX: a new generation of gamma camera based on the Medipix 2 technology
- Low weight, high sensitivity, plug-and-play system
- Optimal tool for the plutonium detection

□ Future developments

- Improvement of the sensitivity at high-energy (¹³⁷Cs, ⁶⁰Co)
- Address the problem of partially coded source (software/hardware solutions)
- Improve the portable aspect to create a new type of radioprotection tool

Developments carried out in the frame of a collaboration with EDF

energie atomique • energies atternative

Thanks a lot for your attention

ISOE Conference, 17–19 November 2010, Cambridge