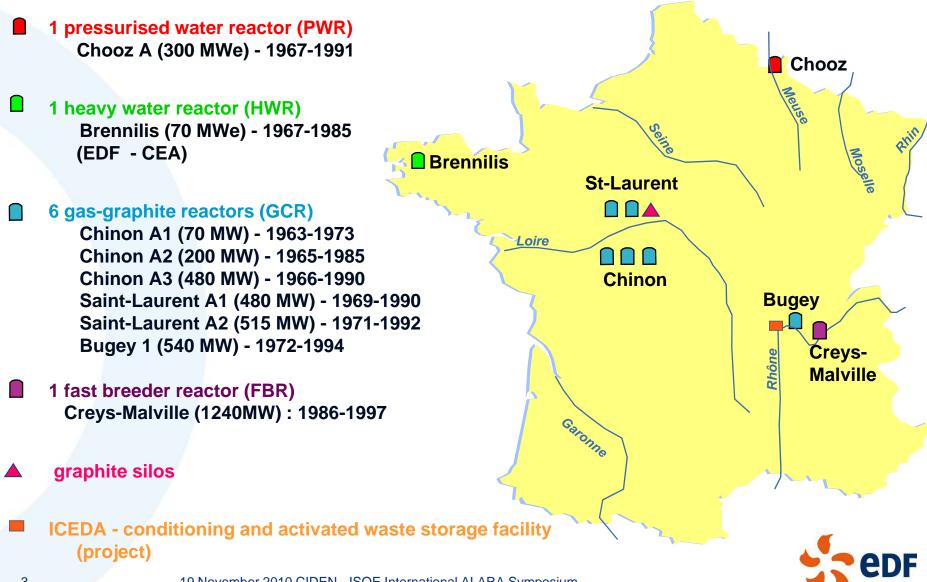
EDF General Methodology to assess worker exposition and environmental impact caused by work during dismantling –

> *Lack of knowledge and tracks to improve it.*

An operation type: the case of BUGEY 1

2010 ISOE International ALARA Symposium Cambridge 17-19 november 2010

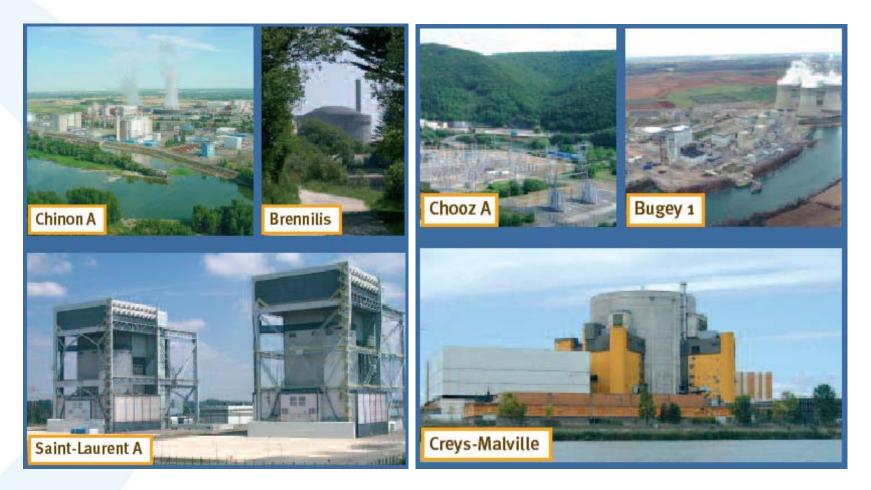
Patrice FAYOLLE, Gérard LAURENT-EDF-CIDEN






- **1. EDF decommissioning sites**
- 2. Specificities of dismantling activities
- 3. Development of dismantling scenarios
- 4. Example of Bugey 1
- 5. Orientations for the future
- 6. Conclusion




### 9 EDF units under decommissioning



19 November 2010 CIDEN - ISOE International ALARA Symposium



### **Decommissioning Sites**





# Specific features of a decommissioning sites

- Dismantling activities present specificities in comparison with activities during reactor operation, which will have consequences on the radiation protection preparation of the task:
  - Lack of feedback experience:
    - Solution Most of the time, new tasks and even sometimes unique tasks (i.e. most of dismantling activities of the Creys-Malville reactor),
    - ✤ Not yet enough feedback experience.
  - Solution: Difficulties to accurately evaluate radiological conditions:
  - ✤ Lack of knowledge about history of reactor operation,
  - ✤ Impossibility to perform measurements or old radiological maps,
  - Source term following removal of equipments or due to radioactive decay,
  - Schanging dose rates in waste storage,
  - Very dosant works when reaching equipment close to the core, little national Feedback, important international Feedback (notably from the US)







# Specific features of a decommissioning sites

Solution by Difficulties to accurately evaluate the exposed workload:

Solution for tasks, which last months or even years,

Because of the great sizes a significant portion of the input data is only estimated and calculated

Service Waste management :

Solution Many waste of different types (VLLW, LLW, ILW) to manage. Need to preserve the national repositories (notably VLLA

Severation of installations during the works, important "worker safety" problem.

Significant contamination problems linked to the airborne discount of radioactive materials following the use of aggressive cutting methods, in particular in case of using thermal cutting and/or presence of alphas.

Service An example and the service and the service assessment is necessary, in particular for public enquiries.

Service Antional Partial/total release ('brown' or 'green' sites) of the sites.

♦ What to do with VLLW from soil and concrete?





## **Development of dismantling scenarios**

The choice of reference scenario is made in several steps (combination of ideas, pre design, detailed design) taking into account all the industrial actors involved in decommissioning activities

- Ultimately, leading to:
  - the files in order to obtain the dismantling authorization decree from public power
  - > in support of that: a safety report and support studies

 A multi-industrial team (civil engineering, waste, decommissioning technology, radiation protection, safety, security, environment, etc.) supports the development of the scenario



# **Development of dismantling scenarios**

- ENVIRONMENT: The choice can be oriented according to environmental requirements, notably filtration. In general, the constraints are proportional to those of the Radioprotection (for example in case of thermal cutting of activated structures) but are weaker.
- WASTE: The choice of cutting types is important but:
  - Absolute requirement to limit cutting:
    - Fewer releases,
    - Fewer doses,
    - Less waste generated,
    - Less road/rail transport,
    - Lower costs
  - In all cases, prefer one piece removal ( case of Vessel, Steam Generator, etc)
  - Only envisage cutting if this is obligatory.



### **Development basis of dismantling scenarios**

#### • Radioprotection:

> significant parameters which influence design choices

studies include, among others:

> a detailed analysis of working conditions,

> a detailed doses study reliable to the scenario.



# **Development of dismantling scenarios**

#### The need for a lock-out period between

• The choice of scenarios and the reliable issues which are:

- The doses at working places,
- The environmental impact studies,
- The waste studies.
- If one of these issues is unacceptable, the scenarios will need to be reconsidered.





Linked with:

- Source term released into the environment,
- o Impact on water, on air.

This term is similar to the impact assessments issued for the operating units and will not be developed here (same methodology, same tools, same references)

In general, for EDF's operating units, the impact is low.

In the case of "mixed" sites (ie operating unit and dismantling unit):

Impact of the dismantling unit < Impact of the operating unit.



### Source term released into the environment

#### It depends on:

- o the planning of the operations,
- o the radiological inventory:
  - coming from activation due to the neutron flow
  - coming from contamination by corrosion products
- The release into the "intra muros" (water and air) vectors is calculated by a cascade of factors correlated to the choice of cutting types (MDM, AWJ, mechanical cutting, plasma, etc.)
- The releases in the environment are made depending on the type of filtration in operation.



## Radioprotection: estimation of doses at working places

- Forecasting the linking of dismantling operations
  - Data arising from planning of operations (number of participants, protective equipment, complexity of work, etc.)
- Knowledge of the source term and dose rates (conditions of work)
  - Source term: characterization by sampling, measurement, knowledge of the history of the installation, code simulations (neutrons and activation calculations)
  - Iterations of calculations (with samplings measurements results) are necessary to take into account impurities generating significant activities if they are unknown at the time of the supply.
  - Dose rates and zoning are defined on mapping completed with situ studies and <u>by simulation</u> thanks to the structures activation data.



## Radioprotection: estimation of doses at working places

#### Internal contamination and exposure

- Care must be taken in order to get internal doses which must be considered as negligible in EDF sites
  - $\Rightarrow$  key factor  $\Rightarrow$  the internal doses are not taken into account in the working studies
- Levels of contamination measured on-site: they are estimated on future sites and based on coefficients of resuspension specific to the types of work undertaken.



# Use of PANTHERE type models

- The planned dose rates are estimated in the framework of the scenario studies with variable installation configurations that no longer correspond to the initial state
  - $\Rightarrow$  to support the technical choices
  - $\Rightarrow$  to define a reference scenario

and evaluate the working dose rates.

Establish the scheme zoning of the affected areas during the decommissioning.





## Example of BNI N° 45: Bugey-1

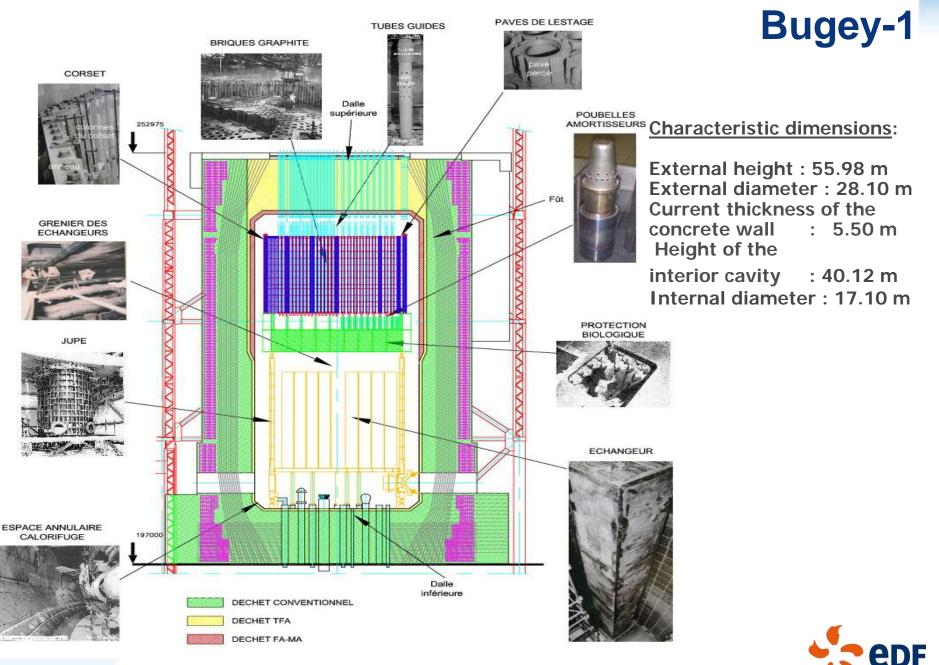


#### <u>Characteristics of Plant 1</u>:

- "INCA" UNGG reactor: caisson-based primary circuit, annular fuel element
- Thermal power: 1950 MW
- Electric power: 545 MWe
- ➤ Fuel:

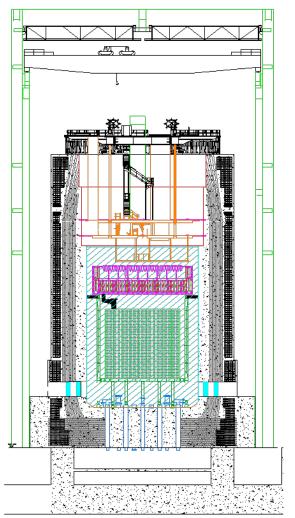
320t of natural uranium slightly enriched in <sup>235</sup>U

Moderator:


graphite stacking (2080t) 9m in
height and 12.20m in diameter
≻ Coolant: gaseous CO<sub>2</sub> under
41.5 bar pressure

exchanger entry temperature: 402°C

exchanger exit temperature: 217°C




19 November 2010 CIDEN - ISOE International ALARA Symposium



# **Dismantling scenario - principles** Bugey-1

- Underwater dismantling of internal equipment
- Opening of the upper slab
- Top-down dismantling
  - > Biological protection of operators via a screen of water
  - > Teleoperation close up
  - > Technical flexibility (management of uncertainties)
  - Industrial feasibility (Fort St Vrain Feed Back)
  - > Use of thermal tools and several workstations







# Dismantling scenario – steps Bugey-1

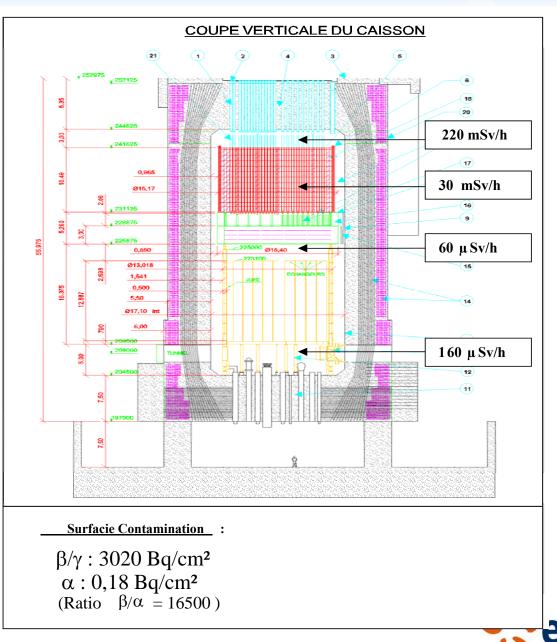
- **1.** Dismantling structures outside the 'caisson'
- 2. Extraction of operational waste
- 3. Dismantling of the caisson
  - Preliminary operations
  - Opening of the BTS
  - Dismantling of upper internal equipment
  - Cutting of the activated civil structures
  - Lowering of the platform
  - Dismantling of the plates and support area
  - Total discharge of the caisson
  - Dismantling of lower internal equipment
  - Treatment of the lower part of the shaft
- 4. Decontamination
- 5. Remediation of the site



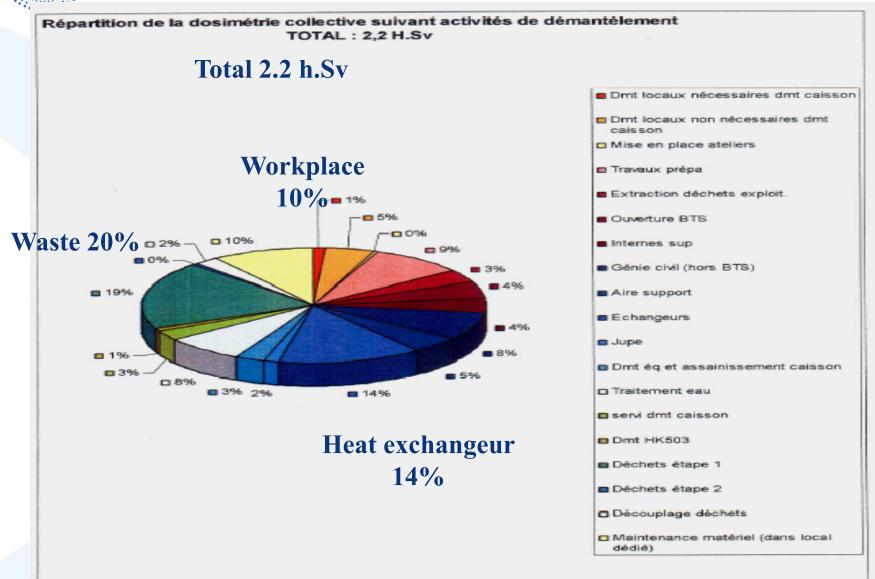


# *RP calculations – input data – source term* Bugey-1

- Main characteristics of the sources:
  - > Already discharged uranium fuel.
  - > Most activated areas: stainless steel structures located close to the core
  - Main radio-element: <sup>60</sup>Co from the neutron activation by filiation of the <sup>59</sup>Co and <sup>58</sup>Fe present in the steel structures
  - Only the activated structures are modeled the contamination is not taken into account (distribution is too heterogeneous)
- Reported sources for the calculations:
  - Complex and detailed spatial distribution of the sources
  - > The majority of the source term is based on CEA/SERMA calculations:
    - Mapping of the flows in the reactor with the help of the TRIPOLI.3 code (future TRIPOLI.4)
    - Calculation of the activations with the help of the code system DARWIN/PEPIN.2
  - > Certain sources have been recalculated analytically on the basis of base equations of the neutron activation:  $dN_B = [\Phi . \sigma_A . N_A - \lambda_B . N_B] . dt$ so as to adjust the impurity rates to the re-estimated values.







Radiological state of the caisson in 2010

Calculated values (PANTHERE) in the upper part of the caisson,

Measured values in the lower part



### Collective dose for the dismantling Bugey 1 scenario



### Radioactive releases

Annual activity releases for gaseous and liquid radioactive waste are required :

- •Tritium
- •Carbon 14

•Other products of  $\beta/\gamma$  transmitter fission and activation

| Unit 900 operation | Regulations | Actual    | Regulations | Actual   |
|--------------------|-------------|-----------|-------------|----------|
| (per year)         |             |           |             |          |
|                    | Gases       | Gases     | Liquids     | Liquids  |
|                    |             |           |             |          |
| Tritium            | 2 TBq       | 0.23 TBq  | 185 TBq     | 11 TBq   |
|                    |             |           |             |          |
| C14                |             | 0.15 TBq  |             | 11 GBq   |
|                    |             |           |             |          |
|                    | }111 GBq    |           | } 2 TBq     |          |
| PA/PF              |             | 0.003 GBq |             | 0.3 GBq  |
|                    |             |           |             | <b>~</b> |
|                    |             |           |             |          |







# Radiological inventory => "Keystone" of the dismantling

- 1. Calculations
  - In particular:
    - Long-distance flow of neutrons ("biasing" method with cooperation of CEA)
    - Quantification of uncertainties
    - Quantification of radiation source by 'reverse calculation' from the mesurated doses .
    - Development of "REMCO" software to quantify the radionuclides transfers on several substrates as steel, concrete, bore carbure (partnership with Ecole des Mines and CNRS)



# Radiological inventory => "Keystone" of the dismantling

#### 2. <u>Measures for consolidating the calculations</u>:

- Work closely with the calculator
- Definition of a range of equipment

#### From the more traditional:

- Gamma camera
- CZT spectroscopy
- ISOCS (soils, GC)
- Traditional core boring



# Radiological inventory => "Keystone" of the dismantling

To the more recent:

- US "TRUPRO" core boring, (Feedback from US)
- Surface measurements in order to replace core boring (CEA, Kourtchatov, EDF/R&D)
- Tritium measures in the soil via vapor injection (EPRI/USA)
- Soil excavation 'SGS system' (issued from DOE studies)



# Lines of thought for the future

- **3.** Growth of Feedback US (10 sites, 10 commercial reactors dismantling)
  - Main lessons:
    - Importance of monobloc discharge (Safety, Authority and ANDRA to be trained)
    - Choice of cutting techniques (importance of mechanical choice and choice of AWJ, MDM)
    - Importance of prototype tests at a good scale (not only tool tests)
    - Water treatment, purification rate of flow,
    - Management of soils and ground waters (4 sites have been or are in the process of being released as "green field" sites)



## Lines of thought for the future

- 4. <u>Some additional pieces of information</u>
- Inhalation risk:

Importance of optimized approach about inhalation

Definition of detailled studies of alpha on type working posts:

E.g. at Saint-Laurent, drawing inspiration from what has been done for the operating units with EDF/R&D:

- Resuspension factors
- Size of aerosols
- Solubility...





## Lines of thought for the future

**Decontamination of concrete:** 

- Technical alternatives in order to reduce of RP constraints (less trying work)
- Use of air sensors
- Alpha working places





# Thank you for your attention



