Lessons Learned from the Fukushima NPS Accidents

2012 International ISOE ALARA Symposium Jan 9 - 11, 2012 Fort Lauderdale, Florida IAEA,OECD/NEA ISOE Committee 7th Chairman JNES Wataru MIZUMACHI

Contents

- 1.North East Japan Earthquake and Tsunami
- 2.Fukushima Daiichi NPS Accident
- **3.Japanese Official Report on Accident Survey**
- 4.IAEA Expert Mission
- 5.Impacts to the environment
- 6.Radiation Exposure for the workers
- 7. Future Efforts to Settle the Situation
- 8.Responses at Other Nuclear Power Stations 9.Conclusion

1.North East Japan Earthquake and Tsunami

4th Largest Earthquake in the World

- At 14.46 Magnitude 9.0 Earthquake 14.51 Largest Tsunami (39.8m height) 133 feet high : ten story building
- So far, 20 thousands people were killed. 300 billion US Dollar damage is estimated. No one is killed by the radiation at Fukushima

2. Fukushima Dai-ichi NPS Accident

2011 off the Pacific coast of Tohoku Earthquake

- •Occurred 14:46 March 11, 2011
- •Magnitude:9.0 Mw
- •Epicenter location: 38° 10"N and
 - 142° 86"E, and 23.7km in depth

Source: Fire and Disaster Management Agency

East coast of northern area in the main island of Japan is seriously damaged
As of August 11, 15,810 people are dead and 4,613 people are missing according to the Fire and Disaster Management Agency

Nuclear reactors near epicenter of the earthquake

March 11, 14:46, The earthquake occurred

>11 reactors under operation were automatically shut down

- Onagawa 1,2,3
- Fukushima Dai-ichi 1,2,3
- Fukushima Dai-ni 1,2,3,4
- Tokai Dai-ni

≻3 reactors under periodic inspection

- Fukushima Dai-ichi 4,5,6

Around 1 hour later, after tsunami hit theNPSs above

Following reactors went to cold shut down

- Onagawa 1,2,3 : External power and sea water pumps were alive
- Fukushima Dai-ichi 5,6: Emergency DG was alive
- Fukushima Dai-ni 1,2,3,4: External power was alive
- Tokai Daini: Emergency DG was alive

➤The problems came with Fukushima Dai-ichi 1,2,3 and 4.

Location of the Nuclear Installations

Location of NPSs within Fukushima

Layouts of Fukushima Dai-ichi and Fukushima Dai-ni

Summary of Fukushima Dai-ichi NPS

Items	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
BWR type	BWR-3	BWR-4	BWR-4	BWR-4	BWR-4	BWR-5
PCV Model	Mark-1	Mark-1	Mark-1	Mark-1	Mark-1	Mark-2
Electric Output (MW _e)	460	784	784	784	784	1100
Max. pressure of RPV	8.24MPa	8.24MPa	8.24MPa	8.24MPa	8.62MPa	8.62MPa
Max. Temp of the RPV	300°C	300°C	300°C	300°C	302°C	302°C
Max. Pressure of the CV	0.43MPa	0.38MPa	0.38MPa	0.38MPa	0.38MPa	0.28MPa
Max. Temp of the CV	140ºC	140ºC	140ºC	140°C	138ºC	171°C(D/W) 105°C(S/C)
Commercial Operation	1971,3	1974,7	1976,3	1978,10	1978,4	1979,10
Number of DG	2	2 *	2	2 *	2	3*
Electric Grid	275kV x 4				500kV x 2	
Plant Status on Mar. 11	In Operation	In Operation	In Operation	Refueling Outage	Refueling Outage	Refueling Outage

* One Emergency DG is Air-Cooled

Source: Application document of license for establishment of NPS

Collapsed Tower

 Damage of external power supply systems of the Fukushima Dai-ichi and Dai-ni NPSs

Tsunami getting over seawall

Satellite view of Fukushima Dai-ichi NPS

Damage of reactor buildings

Natural Nuclear Fission happened on Nov 2

- TEPCO found the Xenon -135 in PCV of Fukushima Unit No 2.
- The half life of Xenon-135 is short as 5 days and TEPCO made the mistake to declare the criticality.
- The quantity of the Xenon-135 was 0.00001 Bequere/cm2 and TEPCO changed it to the natural nuclear fission in the very small area of the melted fuel which occurs even in the normal operation in the core.

3. Japanese Official Interim Report on Accident Survey

Prime Minister formed Accident Survey Committee

- May 24, 2011 Japanese Cabinet authorized Accident Survey Committee headed by Dr. Hatamura, Professor Emeritus, Univ of Tokyo
- The Interim Report was published on Dec 26, 2011.
- They met 456 people from TEPCO,NSC,NISA, Mayors, and Cabinet Members except Former Prime Minister Kan
- Final Report including Kan's Action right after the accident will be published this summer.

Their first issue is Government one

- The Nuclear Hazard law indicates that the OSC (Off Site Center) which was constructed near every job site has every responsibility in the case of accident.
- However, OSC was not constructed as the seismic class A and then, the information infrastructure was damaged by the earthquake and there were lack of food, water, and electricity.
- Moreover, there was no air filter to protect the radioactive materials.
- Then the members in OSC had to escape from the center which should be the headquarter.

Japanese government should construct OSC to withstand against the big hazard like Fukushima and to maintain the habitability as soon as possible.

Big issues inside White House

- In the severe accident case, Japanese law determines Prime Minister should become the general controller and settle the main control office inside Japan White House.
- Mr. Kan did it ,but he settled two main control rooms. One is 5t floor where he controlled everything and another one located in the basement floor where main directors of the related offices gathered which is determined by the law.
- There was no communication between 5th and basement floor.

Communication issues in NISA

- In the case of the severe accident, there is the official manual which determines the way of the communication.
- The utility should report to NISA Emergency Response Center (ERC) and NISA should report to J White House.
- This rule did not work well this Fukushima case.
- NISA members in ERC should collect the accurate information and report it to the public. NISA remains the big issues on this.

Remaining issues in White House

- There are the law and manual in the case of the severe accident.
- However, these were not working well.
- In the final report they will report where the issues are in the White House in the case of the crisis management.
- They will continue to ask this issues to the government related people including Mr. Kan.

Issues right after the accident

- (1) Mistake on Isolation Condenser of Unit No 1
 - Not only the operators but also headquarter managers did not understand the function of IC well.
 - This fact shows TEPCO is inadequate as the nuclear operator.
 - This fact caused the delay of the water injection to the core and the PCV Vent operation.

Issues right after the accident

- (2) Mistake on alternative core injection, Unit No 3
 - Operator stopped HPCI manually at 2.42 on Mar 13 without taking the permission from the managers.
 - As the result they failed to reduce the core pressure and to inject the alternative water to the core.
 - This fact is the big problem on the crisis management.

Issues to prevent the hazard from spreading

- (1) Issues on the monitoring at the first stage
 - Monitoring data is important for the people to reduce the radiation exposure.
 - This time the monitoring posts were broken by the Tsunami and the earthquake.
 - The government was reluctant to open the monitoring data to the public.

The government should design the monitoring post to work properly during the earthquake.

Issues to prevent the hazard from spreading

- (2) Issues of decision making on the evacuation
 - The evacuation was determined only by the 5th floor in the White House.
 - They did not use the SPEEDI result which calculated the radiation level in the local areas using the current weather effects.
 - The evacuation plan was not presented to the local government.
 - Then there were a lot of confusion in the local governments and the people.

Inadequate countermeasures against Severe Accident

- (1) Issues to determine the height of Tsunami
 - a. The regulatory body
 - There were no Tsunami experts in Nuclear Safety Commission which makes the regulation rules.
 - b. TEPCO
 - TEPCO got the construction permit by 3.1m height of Tsunami in 1972 and revised to 5.7m in 2002.
 - TEPCO reevaluated it in 2010 and got 15m height but they did not take any action because they thought the model was not adequate.

Hatamura committee highly recommends for NPPs to design against the severe accident for every NPPs.

Issues of nuclear regulatory organization

- (1) They need the independency and transparency
 - They need the responsibility to explain on the nuclear safety to the public.
- (2) They need the strong organization responding rapidly and properly in the case of Severe Accident.
- (3) They need the excellent specialists.
 - In order to get the excellent specialists there are the needs for upgrading their careers and for the long training and for the personnel exchanges.
- (4) There is the lack to watch the comprehensive view looking at the countermeasure on the severe accident
- (5) They should regulate Severe Accident by the law.

4. IAEA Expert Group

IAEA Expert Group conclusion on Fukushima

- This June, IAEA expert group visited Fukushima.
- This group is composed by 18 experts from 12 countries headed by Mr Weightman from HSE, UK.
- There is Jennifer Uhle from USNRC.
- They summarized 15 conclusion and 16 recommendation.

IAEA Expert Group conclusion on Fukushima

- There is a need to consider the periodic alignment of national regulations in particular of the impact of external hazards.
 - (every ten years)
 - For Fukushima, the original design condition of the tsunami was 3.1m high and in 2002 they revised to 5.7m and ACRS member indicated there is the evidence of 15m tsunami at Jorgan Earthquake in 869. The actual tsunami was 14.5m this time.

List of earthquakes in Japan

From Wikipedia, the free encyclopedia

This is a **list of earthquakes in Japan** with a magnitude of 7.0 or above or which caused significant damage or casualties. As indicated below, magnitude is measured on the Richter magnitude scale (M_L) or the moment

magnitude scale (M_w) , or the surface wave magnitude scale (M_s) for very old earthquakes. The present list is not exhaustive and reliable and precise magnitude data is scarce for earthquakes that occurred prior to the development of modern measuring instruments.

~BC 200 Year

Yayoi Earthquake

This list is incomplete; you can help by expanding it (http://en.wikipedia.org/w/index.php? title=List_of_earthquakes_in_Japan&action=edit).

Magnitude Date 🖻 Name of quake Japanese name Romaj M 8.0-8.4 Hakuko Nankai Hakuka 白鳳南海地震 November 29, 684 (unknown earthquake Nankai scale) occurred at 7.9 M June 5, 745 Minoh 869 Sanriku Jōgan s 貞観三陸地震 8.3 M earthquake and **July13, 869** jishin tsunami

56th Emperor Seiwa

Present Emperor is 125th.

All victims by the Tsunami have no responsibilities.

I have all responsibility because the god punished my activities as the emperor.

Do not take any tax from these areas attacked by the tsunami.

I will pray at Ise Temple and the officers should go there and help

all victims.

Clean up the mass of rubble.

858~876 as Emperor

Jorkan Earthquake and Tsunami attacked the same area in 869. IAEA Expert Group conclusion on Fukushima

- 2. Strengthen the management in the case of the severe accident.
 - The training and education are very important. In Japan, there is the special training on the severe accident at the job site including the prime minister once a year. But it is a kind of ceremony which means that they do not believe the severe accident really happens. The complicated structures and organizations can result in delay in urgent decision making.

Who is the boss in the case of SA?

- The site manager called the president and the chairman of TEPCO by phone.
- The prime minister said "I am the expert on the nuke."
- IAEA representative from Slovenia pointed out Japan is such a country where they need the permission from the prime minister to make PCV Vent and insert the water into the core.

We should determine the captain in the case of SA like Mr. Harold Denton at TMI accident and so I will invite him to Tokyo this November

IAEA Expert Group conclusion on Fukushima

- 2007 IRRS (Integrated Regulatory Review Service) indicated the complicated regulatory organizations.
 - There is no answer on this issue from

Japanese Government.
5. Impacts to the environment

Amounts of radioactive materials discharged to the atmosphere

Organization	I-131	Cs-137
NISA (JNES) (April)*	1.3X10 ¹⁷	6.1X10 ¹⁵
NISA (JNES) (May)*	1.6X10 ¹⁷	1.5X10 ¹⁶
NSC (JAEA)**	1.5X10 ¹⁷	1.2X10 ¹⁶

(Unit: Bq)

- * NISA with assistance from JNES made this estimation based on the analysis of reactor status.
- **NSC (Nuclear Safety Commission) with assistance from JAEA made this estimation based on the data of environmental monitoring and air diffusion calculation.

INES rating

- NISA issued provisional INES ratings, based on "What is known" at the time.
- 1. At first, following units were rated as Level 3 based on "Defense in Depth" criteria about 10 hours later from the earthquake.
 - Fukushima Dai-ichi unit 1, 2 and 3, Fukushima Dai-ni Unit 1, 2 and 4
- In the evening on March 12, the rating of Fukushima Dai-ichi Unit 1 was re-evaluated to Level 4 base on the "Radiological Barriers and Control" criteria.
- 3. On March 18, Fukushima Dai-ichi Unit 1, 2 and 3 were re-rated to Level 5 based on "Radiological Barriers and Control" criteria because the fuel damage was highly possible. Fukushima Daiichi Unit 4 was evaluated to Level 3 based on the "Defense in Depth" criteria.
- 4. On April 12, Fukushima Dai-ichi NPS was revised Level 7 based on the "People and Environment" criteria, as a result of discharged estimation.
- Official rating will be done after cause and countermeasures are identified.

Radiation monitoring in the site

Result of airborne monitoring by DOE and MEXT

Readings of air dose monitoring inside 80km zone of Fukushima Dai-ichi NPS

Protected Areas

Number of sufferers

Area	Number of people
Evacuation area	About 78,000 (population in this area)
Deliberate evacuation area	About 10,000 (population in this area)

6.Radiation Exposure for the workers

Distribution of exposure dosage of workers engaged in emergency radiation work in the Fukushima-Daiichi of TEPCO

(Cumulative doses from March to November in 2011))

classification	March - October		March - November		Fluctuation				
(mSv)	TEPCO	Contrac tor	Total	TEPCO	Contrac tor	Total	TEPCO	Contrac tor	Total
Over 250	6	0	6	6	0	6	0	0	0
Over 200 - 250 or less	1	2	3	1	2	3	0	0	0
Over 150 - 200 or less	19	2	21	21	2	23	2	0	2
Over 100 - 150 or less	116	23	139	116	23	139	0	0	0
Over 50 - 100 or less	354	308	662	366	320	686	12	12	24
Over 20 - 50 or less	627	1,686	2,313	631	1,824	2,455	4	138	142
Over 10 - 20 or less	493	2,320	2,813	474	2,452	2,926	-19	132	113
10 or less	1,648	10,175	11,823	1,701	10,907	12,608	53	732	785
Total	3,264	14,516	17,780	3,316	15,530	18,846	52	1,014	1,066
Max. (mSv)	678.80	238.42	678.80	678.80	238.42	678.80	-	-	-
Ave. (mSv)	23.36	9.38	11.95	23.52	9.25	11.76	-	-	-

Dec 27, 2011

Radiation Exposure for the workers

- Radiation exposure limit for the workers in the
- Emergency case by IAEA is 500mSv/year,
- but Japanese government determined the Limit as 250mSv/year.
- The radiation exposure tables made by TEPCO show that there were 6 people above this limit on March, but there is no one who exceeded the limit after March.
- But there 137 people above 100mSv and 2,683 people above 20mSv by August 31.

May 20th Dose-measurement Points by γ camera in the Reactor Building of Unit 1

Ground Plan of 1st Floor of the Reactor Building of Unit 1

(note) data in the parenthesis is measured on June 24

Survey map of Fukusima Daiichi Nucler Power Station on March 23, 2011

* Around concrete pumping vehicle called "Giraffe"

Unit 2: The result of investigation of the inside the R/B (1st floor) and of radiation dose measurement.

- Difficult for workers to stay in the area for more than 15 minutes due to physical capacity.

7. Future Efforts to Settle the Situation

Efforts to restore the Accident

Red colored: newly added to the previous version, Blue colored: modified from the previous version

Overview of Major Countermeasures in the Power Station as of June 17

Main points of Roadmap

ls	sues	Main points	
I. Cooling	Reactor	 Nitrogen gas injection (Step I) Circulation cooling system in which contaminated water accumulated in buildings is reused for reacto cooling (Step I, II) 	
	Spent fuel pool	 Circulation cooling system (Step I) 	
II. Mitigation	Accumulated water	 Installation of storage/processing facilities (Step I) 	
	Ground water	• Mitigation of contaminated ground water (Step I, II)	
	Atmosphere /Soil	 Dispersion of inhibitor (Step I, II) Removal of debris (Step I, II) 	

8. Responses at other Nuclear Power Stations

1. Emergency Safety Measures

- NISA instructed all electric power companies to implement emergency safety measures. (30 March)
- Based on the report from each electric utilities, NISA has confirmed that emergency safety measures had been appropriately implemented.(6 May)

2. Additional Emergency Safety Measures

NISA and other relevant ministries are to improve and strengthen the emergency safety measures based on lessons learned from the accidents which are stated in the Government report to IAEA. (7 June)

3. Hamaoka NPS shutdown

The government requested Chubu Electric Power Company to halt the operation of all units of Hamaoka NPS due to high possibility of large-scale tsunami resulting from the envisioned earthquake. (6 May)

4. Stress test

The government announced to hold the stress test on NPPs. (6 July)

Outline of Emergency Safety Measures

Phase	Emergency Safety Measures				
Fliase	Short Term	Mid Term			
Expected Time to Completion	Done	One to three years			
Goals (Desired Level / Extent)	Preventing fuel damage and spent fuel damage even if (1)AC power supplies, (2)seawater cooling functions and (3)spent-fuel storage pool cooling functions are all lost.	Enhancing reliability of emergency safety measures (short term) (Securing/speeding up achievement of cold shutdown; measures against tsunami)			
Examples of Specific Measures	 [Securing Equipment] Deploying power generator vehicles (to support cooling reactors and spent fuel pools) Deploying fire engines (to supply cooling water) Deploying fire hoses (to secure water supply routes from freshwater tanks, seawater pits, etc.) [Preparing Procedural Manuals, Etc.] Preparing procedural manuals for emergency responses utilizing the above-mentioned equipment [Training to Respond] Implementing training for emergency responses based on the procedural manuals [Measures Against Flooding] Measures to prevent flooding at reactor buildings assuming approx. 15-meter-high tsunami 	[Measures Against Assumed approx.15-Meter Tsunami] Building seawalls Installing water-tight doors [Measures to Secure/Speed Up Achievement of Cold Shutdown] Installation of air-cooled diesel power generators Securing back-up electric motors for seawater pumps Actions needed for other necessary equipment			

Series of Events and Countermeasures in case of tsunami, for BWR

Series of Events and Countermeasures in case of tsunami, for PWR

浸水対策(関西電力の例)

さらなる安全裕度向上対策(関西電力の例)

9. Conclusion on Fukushima Accident

- Nuclear Power Plant contains a lot of the high radioactive materials and we should not release these to the public. Fukushima made the bad organizational mistakes in TEPCO and regulatory body.
- 2.We have to remember the basic safety philosophy of the nuke.
- 3. The complicated structures and organizations can result in delay in urgent decision making.
- 4.In the case of severe accident, the water, the electricity and the instrumentaion are essential.
- 5.Right now, the temperatures in the reactor cores were under 70 degree which mean stable.

Conclusion on Nuclear Renaissance

- 1.Before Fukushima accident, 438 new NPSs will be expected to start operation by 2025.
- 2.After Fukushima, Germany, Italy, Switzerland, Spain will quit the new construction of NPSs. 3.USA and Japan will delay the new construction. 4.China, India, Finland, and the new countries like Vietnam and UAE will continue to construct NPSs. 5.On Oct 30,2011 there are 7 billion people in the world and we need more energy. We have to make the required modifications for the public to feel the safety of the nuclear and continue its new constructions

Thank you for your attention

For more information, please visit: www.isoe-network.net www.nea.fr