

EPEI ELECTRIC POWER RESEARCH INSTITUTE

EPRI BWR/PWR Water Chemistry Guidelines Update and Impact on RP

Daniel M. Wells, PhD – EPRI Project Manager 2012 International ISOE ALARA Symposium Ft. Lauderdale, FL, USA January 11, 2012

Overview

- EPRI Chemistry Program Introduction
- PWR Primary Water Chemistry Guidelines Revision 7
- BWR Water Chemistry Guidelines Revision, 2013
- EPRI Source Term Related Projects

EPRI Chemistry Program Roles Industry Strategic & Planning Roles - Lead cross-functional collaboration (internal and external) Technical basis for regulatory change Industry Technology Development Role **Materials** Innovative R&D Degradation Technology demonstrations/evaluations Leadership for Technical Guidance Guidelines/guides and desk references Radiation Technical Fuel Application sourcebooks/decision trees & Waste Reliability Guidance Mgt Benchmarking Unique Tech Transfer/Application Role Software/application tools Chemistry - Communications/conferences/workshops Optimization Onsite presence/assessments Users groups EPRI Chemistry Program Newsletter – EPRI Document 1023604

Updated Bi-annually

EPRI Water Chemistry Guidelines Background

- Review Required per BWRVIP and SGMP
 - Supporting NEI 97-06 and NEI 03-08
 - Review starting two years after a published revision, and then each year until next revision started
- Review Addresses:
 - Do the identified issues necessitate a GL revision starting in the next year?
 - Does any particular issue require development of interim guidance?
- Applicable to all plant designs

EPRI Water Chemistry Guidelines *Review Scope*

- Review process addresses:
 - Industry Operating Experience
 - Technical work from EPRI Programs
 - Industry Comments
 - Input from NSSS and Owner's Groups
 - Active Interim Guidance
 - Active Deviations
 - Active Inquiries / Review Board Interpretations
 - Relevant SGMP/BWRVIP Information Letters

PWR Primary Water Chemistry Guidelines

Key Contact: Joel McElrath jmcelrath@epri.com, 1-650-714-4557

PWR Primary Water Chemistry Guidelines 2011 Review Meeting

- Revision 6 issued December 2007
- Most recent Review meeting held on June 15, 2011
 - 55 Attendees
 - 25 Utilities, 11 countries
 - EPRI, EPRI consultants
 - BWC, Westinghouse, PWROG
- Results
 - There is a need to begin a revision starting in 2012
 - No additional interim guidance is needed at this time considering that the revision is starting in 2012
- 2011 Deliverable
 - EPRI Technical Update (1022827, Dec. 2011)

PWR Primary Water Chemistry Guidelines Revision Needed

- Incorporation of research results related to Chemistry, Fuels, Materials and Radiation Management
- Incorporation of additional plant operating experience
- Coordination with other EPRI Guidelines, specifically the PWR Fuel Cladding Corrosion and Crud Guidelines (revision starting in 2012)
- Two interim guidance documents and a standing SGMP Review Board interpretation need to be incorporated.

PWR Primary Water Chemistry Guidelines *Revision 7 Committee*

Preparation:

- Oct 18, 2011: Notification to Industry
- Dec 01, 2011: Deadline for Identification of Voting, Attending and TRT Members
- Jan 31, 2012: Deadline for additional Technical issues

Revision Committee Meetings:

- March 27-29, 2012 (Crystal River 3)
- June 2012 (Europe)
- September 2012 (TBD, USA)
- March 2013 (TBD, USA)

Point of Contact:

- Joel McElrath (650-714-4557)
- jmcelrath@epri.com

BWR Water Chemistry Guidelines

Key Contact: Susan Garcia <u>sgarcia@epri.com</u>, 1-650-855-2239

BWR Water Chemistry Guidelines *Revision Needed*

- Incorporation of research results related to Chemistry, Fuels, Materials and Radiation Management
- Incorporation of additional plant operating experience
 - On-Line Noble Metal (OLNC)
 - TiO₂ Experience
- Need for additional guidance identified
 - Sampling and monitoring
- Two interim guidance documents Issued
 - BWRVIP letter 2010-255
 - BWRVIP letter 2011-097

BWR Water Chemistry Guidelines Review Committee

- EPRI Staff (Materials, Fuel, Chemistry, Radiation Management)
- Utility Staff domestic and international (same groups as EPRI)
- INPO (non-voting participation)
- NSSS Vendors (GE-H, Toshiba, Hitachi)
- Fuel Vendors (GNF, AREVA, Westinghouse)
- Technical Experts & Consultants

BWR Water Chemistry Guidelines 2013 Revision

Preparation:

• December 12, 2011: Notification to Industry

Kickoff Webcast:

- February/March 2012
- October/November 2012
- March 2013

Revision Committee Meetings:

- May 21-23, 2012 Zurich, Switzerland
- June 12, 2012 Santa Fe, New Mexico
- Dec. 4, 2012 Naples, Florida
- June 2013 (TBD, USA)

Point of Contact:

Susan Garcia (650-855-2239) sgarcia@epri.com

Source Term Related Projects

Key Contact: Dan Wells <u>dwells@epri.com</u>, 1-650-855-8630

Chemical Strategy for Reducing Radiation Fields *R&D Plan*

Corrosion and Release	 Chemistry and Releases Zinc injection Interaction of Chemistry and Surface Modification Hydrogen and ECP 	
Corrosion Product Transport	 Advanced resin/media development Primary Side Resin Testing Primary Side Cleanup Optimization Startup and Shutdown Sourcebooks 	
In-Core Deposition, Activation, and Release	 Extended Activity Releases <u>Optimized Fuel Crud Characteristics</u> Crud Modeling Fuel Cleaning 	
Out-of-Core Deposition and Incorporation	 <u>Chemical Injections on Dose Rates</u> Decontamination/Flushing Particulate Transport <u>Activity Transport and Gamma Scanning</u> 	

Ξ

Recent EPRI Source Term Related Projects

Cobalt Reduction Sourcebook (2010, 1021103)

- Provides generalized valuation strategies in tables and flowcharts.
- Focuses on cross-discipline cobalt reduction program.
- PWR Activity Transport and Source Term Assessment: Surface Activity Concentrations by Gamma Scanning (2011, 1023027)
 - Compiles available gamma scan campaign data from PWRs.
 - Quantitatively evaluates the effect of zinc on Co-58 release and out-of-core incorporation rates.
- PWR Standard Radiation Monitoring Program Summary (2011, 1023020)
 - Provides updated plant benchmarking comparison for the most recent, available cycle radiation field data collected in the program.

• Extended Releases during PWR Shutdowns (2011, 1023026)

Suggest fuel crud deposit thickness is related to instances of extended releases.

PWR Activity Transport and Source Term Assessment (2011, 1023027)

Collect and evaluate surface activity data from PWR primary system components and improve understanding of the impact of source term reduction technologies on activity transport and radiation field generation.

PWR Surface Activity Concentration Data *General Results (1023027)*

- Available PWR gamma spectroscopic data
 - 22 cycle, 6 collection methodologies
- Trends incredibly complex
 - Concentrations significantly impacted by minimal operating chemistry changes
- Co-58 and Co-60 are major isotopes
 - Generally Co-58 > Co-60
 - Co-60 major contributor to dose due to high energy gammas

Quantitative Activity Transport Balance *Activity Balance Using Gamma Scanning Data*

Balance of radioisotopic elements developed

Net release rate from fuel = Net incorporation rates into Stainless Steel and Inconel + Decay in coolant + Letdown removal

 At steady state equilibrium, net incorporation rate into surface oxides equals decay rate in oxides

$kAC = \lambda AC$

 Application to Co-58 with piping and tubing surface specific activity data (µCi/cm²) from gamma scans

Pressurized Water Reactor Activity Transport and Source Term Assessment: Surface Activity Concentrations by Gamma Scanning. EPRI Palo Alto, CA: 2011. 1023027.

Effect of Zinc on Co-58 Transport Release and Incorporation Rates

- Piping surface incorporation rate constant decreased ~100x
- 35% decrease in core release rate
 - Decrease also observed at BWRs
- 2012 application to BWR coupon samples and other chemistry changes

Calculated Co-58 Release and Incorporation Rates 350 300 Release/Incorporation Rate (µCi/s) 250 200 150 100 50 0 SS Incorporation **Release Rate** Alloy 600 **Incorporation Rate** from Fuel Rate

EOC 8, Pre-Zinc

■ EOC 11, Post-Zinc

Pressurized Water Reactor Activity Transport and Source Term Assessment: Surface Activity Concentrations by Gamma Scanning. EPRI Palo Alto, CA: 2011. 1023027.

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Optimization of Fuel Crud Characteristics for Reducing Radiation Fields (NEW PROJECT)

- could result in desirable radiation management performance
- Provide a route to effecting core residence time and generation of activated corrosion products
 Incorporate radiation field reduction drivers into core/plant optimization activities

Benefits:

Reducing Source Term Residence Times Background and Motivation

 Deposited activity on out-of-core surfaces results from activation in the core

 ${}^{59}Co(n,\gamma){}^{60}Co$ produced by thermal neutrons ${}^{58}Ni(n,p){}^{58}Co$ produced by fast neutrons

- Neutron cross-sections of Ni and Co require deposition and increased residence times (beyond time in water)
 - Consider all physical, mechanical, chemical properties of crud that effect residence times
 - Leverage previous work on crystal habit modification*

*EPRI Palo Alto, CA: Reports1016243 and 1021649.

Reduction of Parent Nuclide Activation Background and Motivation

- Cladding surface characteristics effect deposition and release
- Thermal neutron flux (Co-60 activation) and water channel geometry
- Zoning to minimize local high boiling/temperature
 - Burnable absorbers and radial enrichment zoning
 - Flow zoning—higher power assemblies have increased flow
- Grid design can effect mixing, heat transfer, and pressure drop
- Rod geometry diameter and length
- Fuel Cycle Length

Bill Allmon, FRP P-TAC, San Francisco, CA, February 2011

Chemical, Fuel, Core Design Control Evaluation Phase I Task

- Establish properties bands for optimized fuel crud that impact residence times for and activation of corrosion products
 - What stays in the coolant or on the fuel does not cause worker dose
- Evaluate parameters of fuel and core design that could result in desirable radiation management performance
 - Prioritize control parameters for cost, ease of implementation, and effectiveness

Figure from *Plant Specific Recommendations for PWR Radiation Source Term Reduction*, EPRI, Palo Alto, CA: 2009. 1019225.

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Impact of Chemical Injection on Dose Rates New 2012-2013 Project

TR: Effect of Uprates on Dose Rates	TR: Effect Chem. Inj. on RCS Dose Rates	TR: Chem. Injections on Aux. Sys. Dose Rates	Advanced Mitigation Techniques	
Out-of-Core Deposition and Release				
2011	2012	2013	2014 -	

Provide a parameter to evaluate the effect of chemistry on dose rates and improved understanding of reactor water radiocobalt concentration's effect on radiation field generation.

Impact of Chemical Injection on Dose Rates Background and Motivation

BRAC vs. Soluble Co-60 by Application Cycle

Predictive Tool for Radiation Fields *New Project Initiative*

- Issue: Effectively manage worker dose to meet new industry goals
- Identified Gap: Ability to predict <u>location</u>, <u>magnitude</u>, and <u>composition/isotopics</u>, of radiation fields during both normal and offnormal operations

Predictive Tool for Radiation Fields *Initial Project Tasks*

- ID & incentivize stakeholders
- Evaluate available tools:
 - Understand what is calculated
 - Physical models
 - Input requirements
 - Outputs
 - Restrictions/limitations
- Identify how the pieces connect
- Analyze Gaps
 - Information requirements
 - Modeling requirements
- Define the tool to be developed

EPRI Water Chemistry Program Summary

- Water chemistry optimization (defined in guidance documents) supports crack mitigation, maintenance of fuel cladding integrity, and radiation field management objectives
 - Both BWR and PWR Primary Guidelines will begin revision in 2012
- Efforts are continuing in order to improve technical understanding of radiation field generation
 - These efforts are collaborative across the institute
 - Ultimate goal to effectively manage worker dose
- Plant data, reliably and accurately collected, remains the best source of information

Together...Shaping the Future of Electricity

