# 20 years of Radiation Protection experience in the Steam Generators Replacements at EDF

CPY standard plant series (900 MWe) Steam Generator Replacements

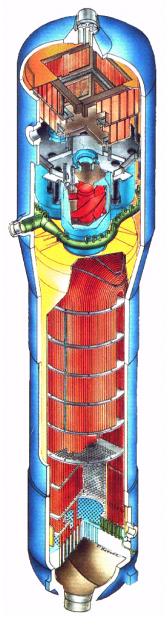
A. BILLEREY – G. ABELA





Description of Steam Generator Replacements on CPY

Steam Generator Replacements and Radiation Protection


Last Steam Generator Replacements RP results on CPY (Dampierre 4 and Blayais 1)



## What is a Steam Generator?

SG = Heat Exchanger between primary water system and secondary water system,

- Characteristics:
  - o Height ≈ 21 m,
  - Lower diameter  $\approx$  3,5 m and Upper diameter  $\approx$  4,5 m,
  - Empty weight  $\approx$  320 tons and Full of water  $\approx$  530 tons,
  - Approx. 3350 U-tubes and 4750 m<sup>2</sup> of heat exchange area,



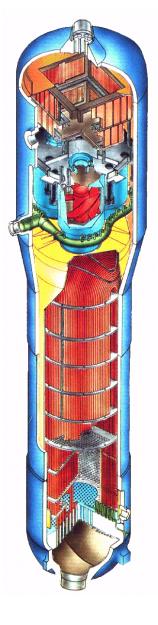


## Why do we replace Steam Generators ?

#### Causes:

Degradation of tube bundle: stress corrosion cracking in primary system, of the alloy used for the tubes,

Consequences:


Safety Risk (SG tube break),

o Loss of availability. Plugging rate.

Solutions:

• Provisional: Tube plugging,

• Eventually: Steam Generator Replacement.



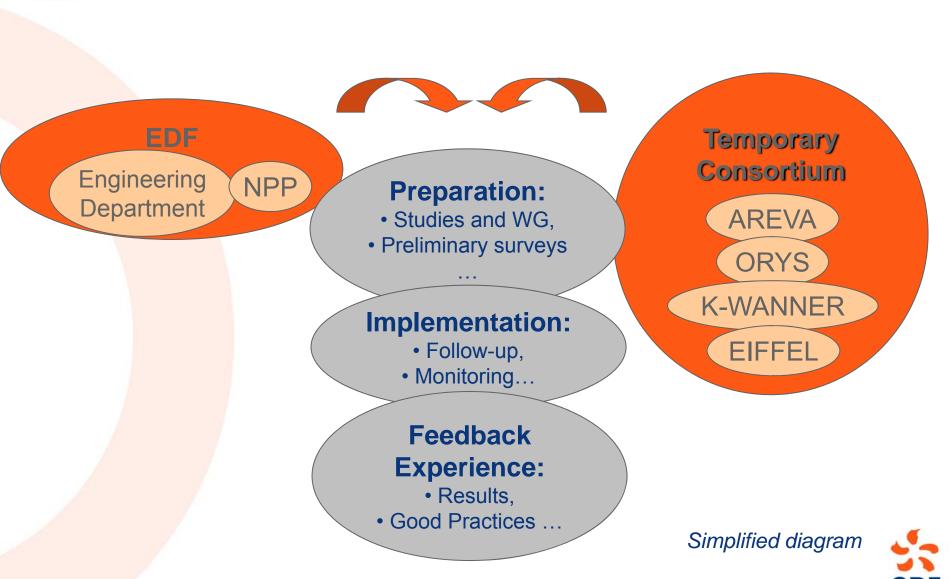
### How is the operation performed?

• The main technical options chosen for the 900 MWe – CPY:

Replacement of 3 SG with possible removal of primary elbows,

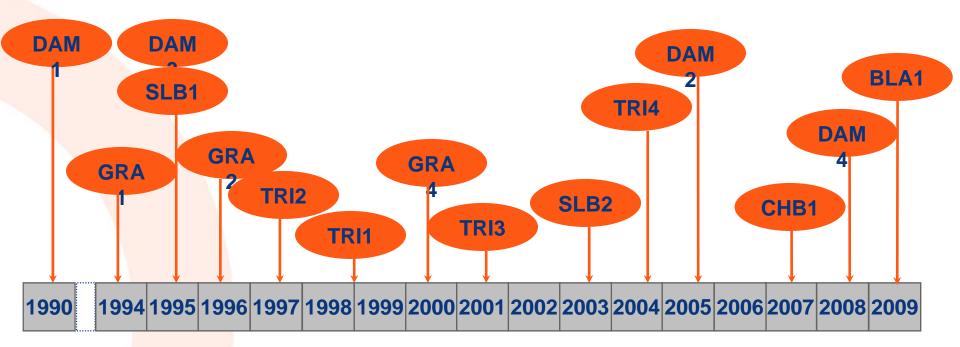
• Evacuation / Introduction of the one piece SG,

Primary and secondary piping cutting,

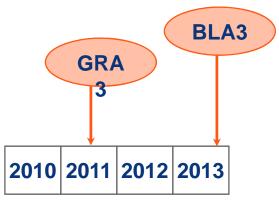

Primary piping Decontamination over 
 <sup>∞</sup> 1m by EMMAC process (soft chemistry) and finish by HP lancing,

Primary piping machining,

• Primary piping welding by automatic orbital TIG with narrow groove,


• Use of standard methods for the cutting and welding of the secondary piping,






# Who is involved during a **Steam Generator Replacement**?

# How many replacements on the CPY and since when?



# 15 SGR performed on CPY CPY SGR to be done



7 13 – 15 October 2009 2009 ISOE International ALARA Symposium -Vienna, Austria,

# Radiation Protection of SGR

 Work Planning and ALARA WG
Main means for the optimization Work site follow-up
Feedback Experience and Continuous Improvement Loop





The surveys allow the Consortium to note, get or ask for all the information they need for the SGR studies completion, including <u>radiation protection field</u>

• Survey N-2 and N-1  $\rightarrow$  performing mapping at work station:

More accurate knowledge of the doserates of a given plant unit,

• Working basis for the teams sizing,

• Working basis for the definition of radiation protection actions:

Definition of the biological shielding set-up



- Optimized Provisional Dose Assessment Initial Goal:
  - Mapping performed at the N-1 outage (State 10: PC full, without Biological Shielding),
  - Work Analysis,
  - Transposition Coefficients (TC),
  - Provisional schedule of the activities at the N outage.

OPDA : Optimized Provisional Dose Assessment DR : DoseRates EW : Expose Workload

 $OPDA_i = DR_{N-1} \times TC \times EW_{N-1} \times k$ 

 $OPDA_{II} = DR_N \times TC \times EW_N \times k$ 

- Optimized Provisional Dose Assessment <u>Updated Goal</u>:
  - Similar approach to that of initial goal calculation considering:
    - Mapping performed at the N outage (State 10),
    - New Work Analysis,
    - Provisional schedule of the activities at the N outage.

• Transposition Coefficients

Extract of a summary table of doserates in mSv/h

|                                        | State 10        | State 20        | State 30        |  |
|----------------------------------------|-----------------|-----------------|-----------------|--|
|                                        | PC full         | PC full         | PC empty        |  |
| Name of the area                       | Without BS      | With BS         | With BS         |  |
|                                        | Used SG         | Used SG         | Used SG         |  |
|                                        | Before deconta. | Before deconta. | Before deconta. |  |
|                                        | Second. full    | Second. full    | Second. full    |  |
| Lateral BU +4m                         | 0.115           | 0.066           | 0.075           |  |
| SG bunker 11m                          | 0.198           | 0.118           | 0.126           |  |
| Reactor Co <mark>o</mark> lant Pump 8r | n 0.182         | 0.150           | 0.177           |  |
|                                        |                 |                 |                 |  |
|                                        |                 |                 |                 |  |
| х ТС                                   |                 |                 |                 |  |



 The SGR Radiation Protection planning is carried out by the ALARA Working Group (ALARA WG).

This ALARA WG is managed by the Engineering Department and consists of representatives from:

• Engineering Department,

 NPP (Contact-person for the job, Contact-person for each trade impacted by the SGR),

• Temporary Consortium (AREVA as head of Consortium for the RP issues).



#### The main assignments of the ALARA WG are:

• Support in establishing the provisional doses,

•Initial goal,

•Updated goal.

<u>Objective</u>: to share all the studies performed by the all people involved →Global and consistent approach

• Choice of the radiation protection actions to be implemented,

• Management of interferences between all the job scheduled during the outage,

•SGR,

- NPP Maintenance,
- •System Modifications Operations.
- Definition of the means and the organization to be established for the follow-up and the justification of the noticed gaps (Information sent to French Safety Authority),
- Knowledge of the Plant organization in order to fit its recommendations and its constraints (radiological cleanness, servicing, ...).

13 13 – 15 October 2009 2009 ISOE International ALARA Symposium -Vienna, Austria,

# Main Radiation Protection optimization means

• Total Collective Dose  $\cong$  1400 man.mSv after purification,

Main optimization means:

• Biological shielding set-up (estimated saving  $\cong$  200 man.mSv),

• Decontamination of the primary piping tube ends using EMMAC process (estimated saving  $\cong$  320 man.mSv),

Drainage « at the latest » of secondary circuit (estimated saving ≅ 180 man.mSv),

Implementation of these means leads to <u>a significant decrease of the</u> total collective dose by approx. 700 man.mSv.

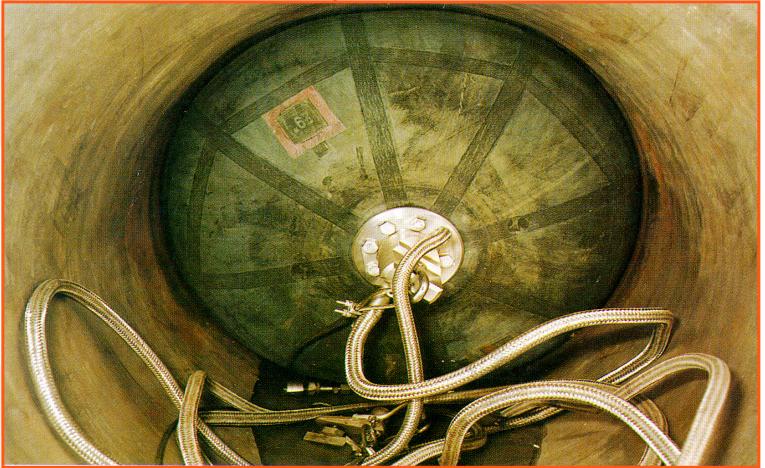


### **Biological Shielding**

Biological Shielding strapped on the piping



#### Biological Shielding on screens






#### Decontamination

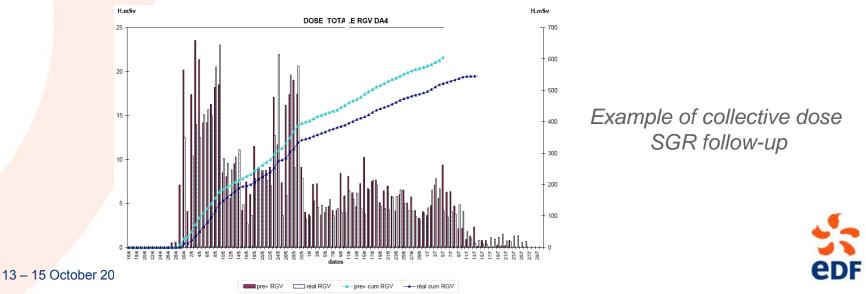
#### Decontamination of the primary piping tube ends

Basic diagram and Picture





### Work site follow-up


 <u>Objective</u>: promote actions suitable to anticipate, restrict or correct any deviation compared with the radiation protection objectives,

Daily monitoring, by each entity, of :

the integrated dose

17

- the exposed workload achieved and radiological cleanliness criteria by job,
- allowing the implementation of corrective actions at the earliest stage in case of drift,
- Performing reactor building mapping at different steps in order to follow the evolution of the ambient conditions.



#### Feedback Experience and Continuous Improvement Loop

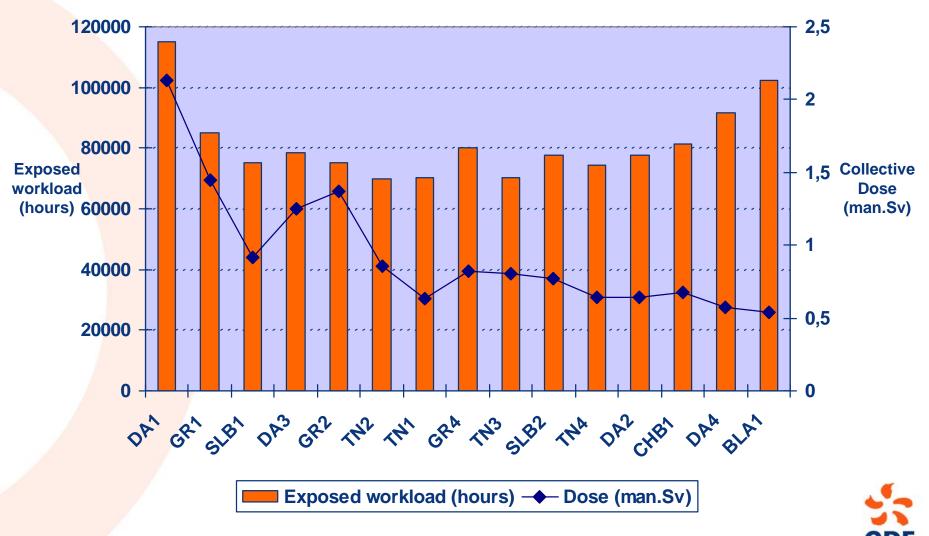
- Level 1 (Consortium)
  - Synthesis of dose results of the SGR,
  - Presentation of the potential mishaps having a RP impact,
  - Justification of the potential gaps between Updated Goal et Achieved Dose,
  - Proposal of improvements of the dose model.
- Level 2 (Engineering Department) to be sent to the Safety Authority
  - Based on Level 1 Analysis,
  - Proposal of improvements for the next SGR.
- Radiation Protection Annex (Engineering Department) integrated to the working documents
  - Description of thoughts and resources used since the design of the SGR to control the dosimetry during this job
  - Increase of revision number after several SGR,



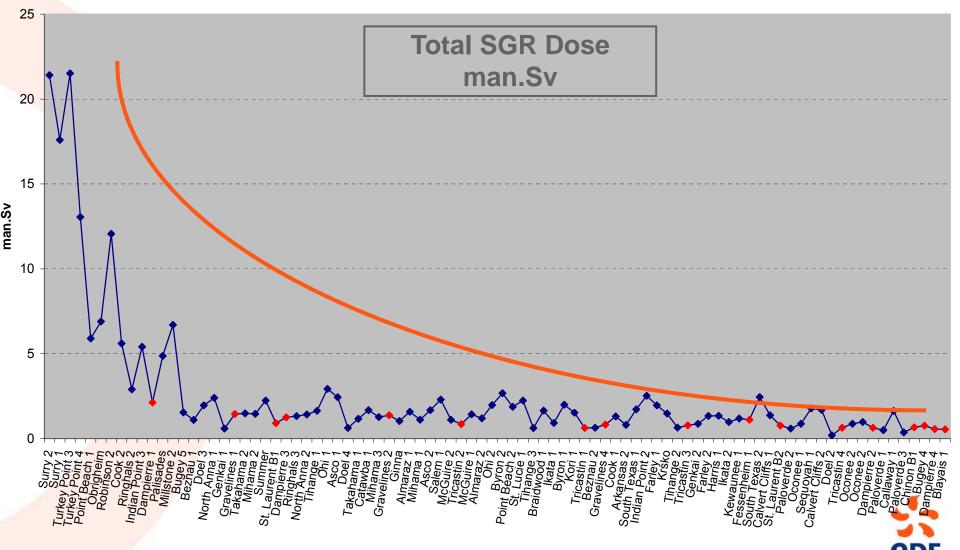
# Dampierre 4 and Blayais 1 SGR

RP Results French Reactors Results International Results Results Analysis

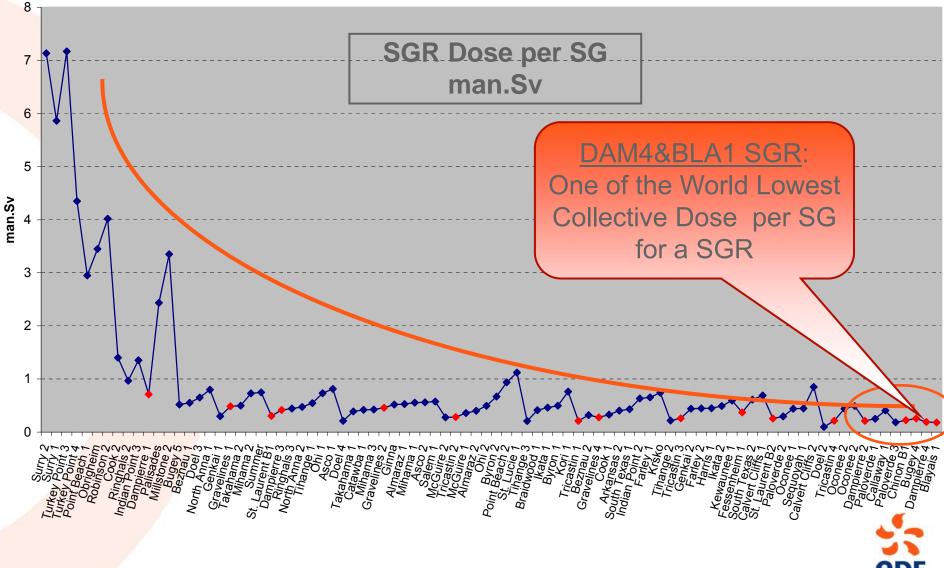



## Dampierre 4 & Blayais 1 RP Results

| DAM 4              |             | BLA 1       |  |
|--------------------|-------------|-------------|--|
| Updated Goal       | 572 man.mSv | 543 man.mSv |  |
| Achieved Dose      | 570 man.mSv | 545 man.mSv |  |
| RP Events          | 0           | 0           |  |
| "C3" Contamination | 0           | 0           |  |
| "C2" Contamination | 0.29 %      | 0.23 %      |  |




#### French Reactors Results


#### Achieved Dose on the CPY



#### International Results, source: ISOE database



#### International Results, source: ISOE database



### Dampierre4 and Blayais1 Results Analysis

Small gap between Updated Goal and Achieved Dose

- Significant Feedback Experience (15 SGR on the CPY),
- Mature model, notably :
  - Dose assessment,
  - Means for the optimization and their implementation.

Low Achieved Dose

- The SGR of DAM4&BLA1 benefited from positive factors:
  - Relatively low doserates,

 Active and Voluntarist Policy from all the people involved (NPP, Consortium and Engineering Department).



### Conclusion

#### Well Planned Work = Well Controlled Dose

Dose savings more and more difficult to achieve,

Variation of 0,1 µSv/h x 100 000 h Exposed workload → Variation of 10 mSv

#### → Importance of:

- Doserates monitoring and potential drift,
- Human behavior on work site,
- Organization and motivation of the 3 participants (Consortium, NPP and Engineering Department).



