

Hot Spot Experience at KKL

Kernkraftwerk Leibstadt

Situation found during operator walkdown:

The situation found (schematic)

What is it?: Nuclide identification

- History: Broken fuel pin in the past and 141 fuel pellets lost in spent fuel pool
- History: Control rod pins and rollers were removed in the fuel pool
- Fuel?
- Fuel cladding?
- Control Rod pin?
- Anything else?

TG10S001 valve lower housing picture taken by endoscope

The principle of spent fuel pool cleaning

- •Move the dirt from the spent fuel pool floor to the radwaste
- No submerged filter disposal

Transport path of Hot Spot

Kernkraftwerk Leibstadt

Hot Spot #1 removal line up

Kernkraftwerk Leibstadt

Mock - up

Kernkraftwerk Leibstadt

Video: Hot-Spot vacuuming sequence TG10S001

Where did the Hot Spot go?

Commercial filter cartridge: clogging

Customized "star-filter": wider mesh, 800 mSv/h, disposal during Control Rod disposal campaign 2010

Situation after Hot Spot #1 removal

Hot - Spot am Ventil TG10S00 ZD04R105 Nach dem Entfernen des Hot - Spots Datum: 29.11.07 Visum: Stritt Oliver

Kernkraftwerk Leibstadt

Hot Spot #2 inside drain line TG10S101

Vacuum hose to filter

Clean water injection for backwash, including check-valve

Video: Hot-Spot vacuuming sequence drain line TG10S101

Situation after Hot Spot #2 removal

Situation before and after RFO24

TG10S001 5 mSv/h / 520 mSv/h Drain line of FPCCU pump protection mesh

620 mSv/h / 4'500 mSv/h

During RFO-24 fuel inspection fuel cladding needed to be brushed. Removed CRUD was pumped into FPCCU suction line. Good idea????

Hot Spot #3

Video: Hot-Spot vacuuming sequence TG10N100 pump protection mesh

Pump mesh before and after cleaning

Remaining Hot Particle #4 1200 mSv/h

Removed foreign material

Installation of collar

collar prevents heavy particles from being washed into suction line

Installation of additional Area Radiation Monitors

•Continuous survey of dose rate situation and warning

Remaining challenges: Hot Spot in filter housing TG10N001

- Option 1
- Remove TG10N001 internals including Hot Spot #4 and install blind part to prevent new Hot Spot build up.
- Install pump protection mesh elsewhere
- Residual heat removal from spent fuel pool during installation?

- Option 2
- Remove entire TG10N001 including Hot Spot #4 and install straight piece of piping
- Install pump protection mesh elsewhere
- Residual heat removal from spent fuel pool during installation?

Conclusions

- If radioactivity is located in a safe place: Leave it there
- If radioactivity has to be moved: Follow the path to the final destination (= geological repository)
- Have your surveys/instruments in place
- Have your RP technicians ready to handle high dose rates
- Have your Foreign Materials Exclusion controls in place

Questions?

Kernkraftwerk Leibstadt