US Field Trial of CZT Detector Technology for Source Term Monitoring and ALARA

2011 ISOE North-American ALARA Symposium and EPRI Radiation Protection Conference January 10-12, 2011 Ft Lauderdale, FL

> Presented by: Dr. Frederic J. Mis

Presentation Outline

- What is CZT?
 - Development History for Nuclear Power Plants (NPP)
- Why Use It?
- How to Use it?
 - Brief Overview of CZT Operation
- First US Field Trial Results
- Future

What is CZT?

Cadmium Zinc Telluride (CZT) Gamma Spectroscopy

- New Gamma Spectroscopy Technology
 - Identifies Isotopes in Energies between 100 keV to 1800 keV
 - Isotopes ID for NPP:
 - Co-58, Co-60, Ag-110m, Cs-137, Sb-124 &122, Cr-51, Fe-59, Mn-54, Zn-65
- Small and Lightweight
- Portable
- Cost Effective
- No Cooling Required
- Done during Refueling Outages
 - 2 days of measurement
 - 3 days of analysis (normally)

Électricité de France (EDF) Leadership

- Developed by Commissariat à l'énergie atomique (CEA)
 - Licensed to Canberra
- EdF Plant Aging Program
 - Deployed to all 58 EdF Nuclear Plants
 - Standard Protocols Measurements ALL RFOs
- Purpose:
 - Source Term Changes
 - EPD's and Instrument Cal
 - ALARA
 - Effective Dose Equivalent
 - Component Degradation
 - Dose Reduction Actions

QuickTime[™] and a decompressor are needed to see this picture

QuickTime™ and a decompressor are needed to see this picture.

EDF Protocol and Data Sharing

- Standardized EDF Protocol
 - Being Implemented in US NPP
 - Exelon, AEP, FENOC, Dominion Taking US Leadership.
 - Exelon committed to the process over the next 4 years as an assessment tool for determination of source term reduction success. Others above following suit.
 - 8 Specific Locations
 - CVCS Pipe In/Out; Regen HX; SG HL/CL Pipe;
 - US Plants Augmented: RCP Flange; CVCS HX, SI Check Valves
- IAEA/ISOE Data Base
 - NATC MOU for Data Upload EdF and US NPP
 - Permits Comparison of Plant Performance
 - <u>Different Source Term reduction strategies and their impacts are measured</u>
 <u>promptly!</u>

QuickTime™ and a decompressor are needed to see this picture.

CZT Device and Analysis

- Major Components
 - 3 Probes: 20 mm³, 60 mm³ 500 mm³
 - Collimator
 - Inspector 2000: Real Time Acquisition and Storage of Gamma Energy Spectrum

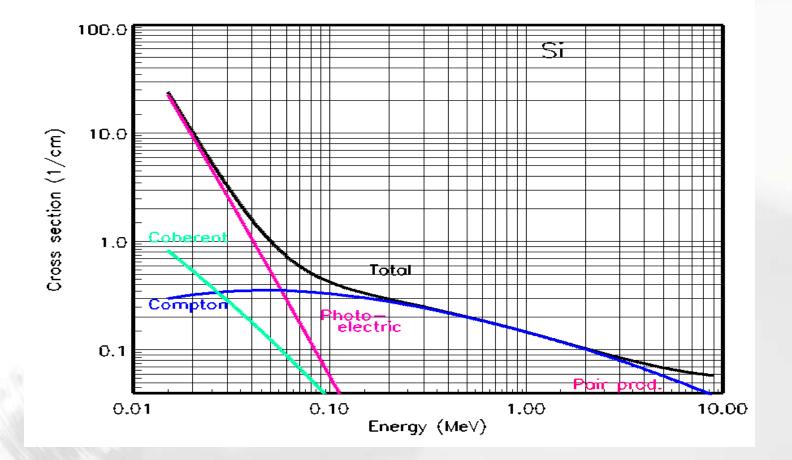
QuickTime™ and a decompressor are needed to see this picture.

CZT Device and Analysis

- CZT Output:
 - Gamma Energy Emission
 - Isotopic Identification
- Needs
 - Pipewall thickness and diameter
 - Insulation material, if any
 - Station ion chamber results
- Results from MicroShield output,
 - Deposited activity in µCi/cm2
 - Dose contributions from each radioisotope
 - This results in an understanding of the impact of cycle chemistry and shutdown crud contribution!

Strength Added to RP and Chemistry Programs

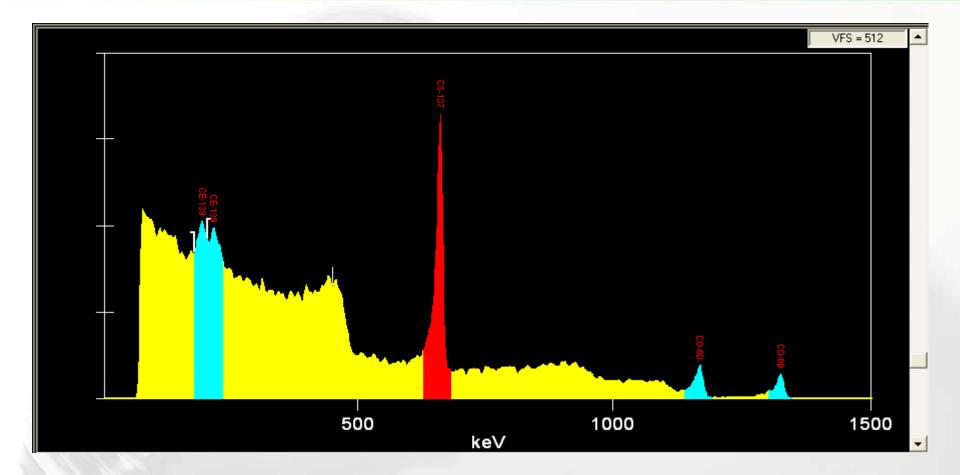
- Source Term Reduction
 - Tracking Performance RFO to RFO
 - Sister Plant Comparison


□ Including 58 EdF Units for data analysis

- Dosimetry
 - Electronic Dosimetry calibration verification
- ALARA
 - Shielding
 - Areas Identified for Dose Reduction
- Instrument Calibration
- Component Aging
 - Isotope Signature

Importance of Calibrating to the Station Energy Spectrum

- Chemistry Source Term Initiatives
 - Can have a profound impact on the response on a plants dosimetry!
 - Shift in Isotopic Mix, Co-58, Co-60 impact results!
- Cs-137 single point calibrations:
 - Found significant differences between DLRs and Electronic Dosimetry (ED), with the EDs under-responding!
 - Over-Corrected ED responses confuse workers, leading to poor confidence in dosimetry results and potential later challengs.
- INPO has issued AFIs when there is a large gap between ED and DLRs,
 - When DLRs and ED see the same spectrum, and are calibrated appropriately, then the difference between the two should be less than 3%.


The basis of the Co-60 silicon underresponse is shown in the response curve below;

Description of Methods for Measurement, cont.

- CZT detector utilizes high atomic numbers in its form in combination with a sufficient band-gap of about 1.47 eV in order to allow operation at room temperature.
- For power plant operations, the ability to have a hand held, easily positioned detector is a premium
 - spaces are tight, or
 - positioning is difficult due to pipe placement, shielding, or
 - other equipment is challenging the operator's ability to perform quality measurements.

A Calibration Spectrum of CZT Crystal, 50 uCi Cs-137, 1 uCi of Co-60

Operating Characteristics of the CZT Vs. GeLi and Nal

- CZT Cs-137 and Co-60
 - FWHM of about 11.5 keV
 - about 1.7 % of peak energy for Cs-137, less for Co-60
- GeLi detector
 - FWHM of less than 0.5% of peak energy
 - but is significantly better than a Nal,
 - which has a value of, about 7% of peak energy depending on the detector volume and the photon energy.

Operating Characteristics

No Cooling Required

- Therefore no risk of having the detector compromised because of a lack of adequate cooling
- The resolution is sufficient for determination of key power plant radioisotopes,
 - cobalts and cesiums, as well as Fe-59, Zn-65 and radioiodines
- Temperature variability will shift the spectrum
 - Best practices are to perform a spectrum analysis prior to and after use if temperatures are more than 10 degrees C different than calibration conditions.

Operating Characteristics

- Collimation/shielding of the detector
 - necessary in radiation fields in excess of 1 mSv/hr, (100 mRem/hr).
 - Angular response on small bore piping can add 31% uncertainity to Co-58 deposited activity
 - No angular dependency without Collimator on Large Bore or Cast Piping
- Different size detectors are available based on field conditions.
 - The crystals which make up the detectors are time consuming to grow, and are expensive.
 - They are sensitive to temperature changes
 - Best practices include peak validation before each days activities.

Braidwood A1R15 CZT Results

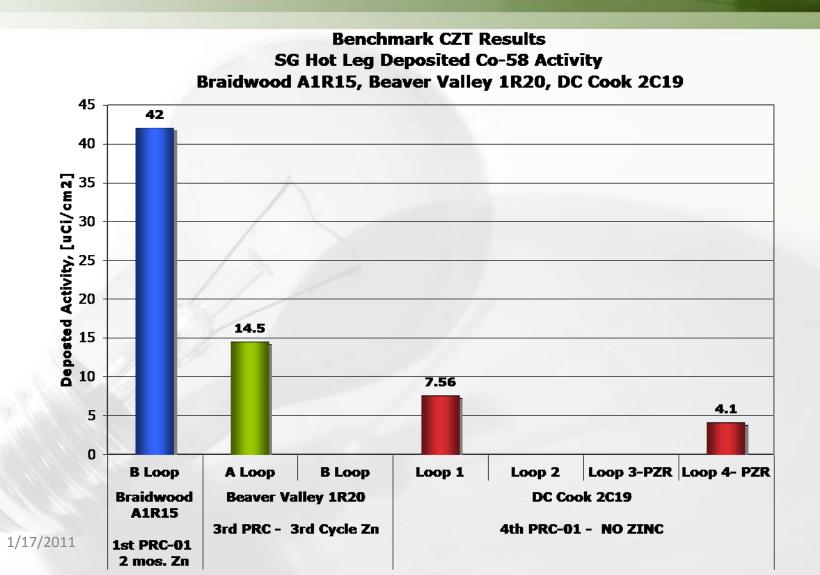
Component Measured	Co-58 Value using CZT detector [nCi]	Co-60 Value using CZT detector [nCi]	Co-58 to Co-60 ratio	Dose Rate @ Survey Pt [mR/hr]	Co-58 Deposited Activity [uCi/cm2]	Co-60 Deposited Activity [uCi/cm2]
S/G cold leg, B Loop	1,200	270	4.4 to 1	75	30.0	2.317
S/G hot leg, B Loop	4,600	575	8.1 to 1	90	42.0	2.70
SI Check Valve 8948A	8,670	410	21.2 to 1	95	4.11	0.123

• Braidwood Unit 1: Final Outage Dose 64.329 REM, 32 days

- 4 Loop Inconel 690 SG, Electropolished Channel Heads
- pH 7.4, 2 mos. zinc Injection, LISV, 1st NPE/PRC-01M
- Experienced 2 hard trips from 100% power, 1 cold shutdown within 2 months of the A1R15 refueling outage.

Beaver Valley 1R20 CZT Results

Component Measured	Co-58 Value using CZT detector [nCi]	Co-60 Value using CZT detector [nCi]	Co-58 to Co-60 ratio	Contact Dose Rate [mR/hr]	Co-58 Deposited Activity [uCi/cm2]	Co-60 Deposited Activity [uCi/cm2]
C S/G cold leg	430	290	1.5:1	50	13.0	2.10
C S/G hot leg	410	270	1.5:1	50	14.5	3.50
B S/G cold leg	214	1164	1.84	40	11.5	2.3
SI check valve	440	357	1.2:1	65	1.75	0.77


- BVPS 1R20: Final Outage Dose 53.65 REM, 32 Days
 - 3 Loop Inconel 690 SG
 - Loop Isolation Valves
 - Zinc Injection Plant, 3 cycles; 3rd PRC-01M

DC Cook- 2C19 CZT Results

Component Monitored	Co-58 Value using CZT detector [nCi]	Co-60 Value using CZT detector [nCi]	Co-58 to Co-60 ratio CZT ratio	Contact Dose Rate [mR/hr]	Co-58 Deposited Activity [uCi/cm2]	Co-60 Deposited Activity [uCi/cm2]
Unit 2, S/G cold leg 1	270	200	1.34	15	4.60	1.82
Unit 2, S/G cold leg 2	217	150	1.45	16	5.34	1.86
Unit 2, S/G cold leg 3	376	207	1.81	27	11.4	2.6
Unit 2, S/G cold leg 4	100	40	2.41	28	12.9	2.5
Unit 2, S/G hot leg 1	333	200	1.66	24	7.56	1.70
Unit 2, S/G hot leg 4	100	102	1.04	17	4.11	1.40

- DC Cook 2C19: 45.95 REM 52 Day RFO
 - 4 Loop Inconel 600 SG, 33% smaller Containment than Braidwood/Byron
 - No Zinc Injection; 4th RFO PRC-01M

Benchmarking Source Term Reduction

19

Future

- US Utilities Purchasing and Integrating Technology
 - NATC Coordinating Measurements per EdF Protocol and
 - ISOE Database: Data Access and Exchange for Benchmarking
- Planned Spring 2011 Plants Conducting CZT
 - Several Plants Participating
 - A number of repeat sites, since information was useful for the first sites investigated (Unit 1 compared to Unit 2, fuel failure history impact,etc.)

Questions?

QuickTime[™] and a decompressor are needed to see this picture.