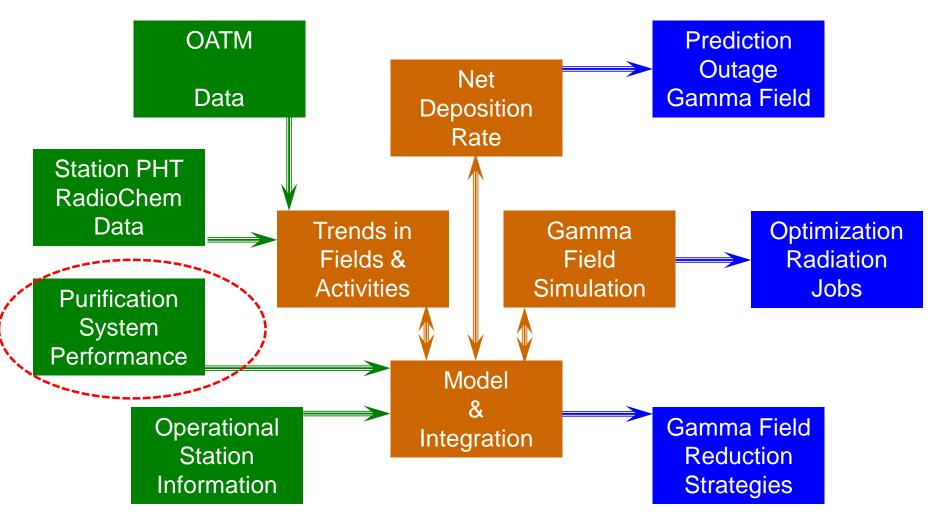


ANALYSIS OF IMPACT OF THE PRIMARY HEAT TRANSPORT PURIFICATION SYSTEM ON OUTAGE RADIATION FIELDS

Y. Verzilov and Y. Kravtsova / KINECTRICS A. Nedelcu, I. Popescu and V. Simionov / CNE Cernavoda

ISOE International Symposium on Occupational Exposure Management at Nuclear Facilities

Brussels • Belgium • June 1-3, 2016


Introduction

- ☐ Kinectrics Routinely Conducts the Source Term Monitoring at CANDU Fleet. Main Activities include:
 - Outage Activity Transport Monitoring Surveys (OATM)
 - Data Integration and Interpretation
 - Radiation Field Trend and Impact Analysis
 - Outage Radiation Field Mapping & Predictions

Data Integration & Interpretation

PHT Purification System

- System is Designed to:
 - Minimize the Levels of Soluble and Insoluble Impurities
 - □ Remove Potential Corrosive and Deposit Forming Constituents (such as chlorides, silicates and carbonates)
 - Maintain the Required Heavy Water Chemistry
- System Consists of:
 - 2 Parallel Filters (FR) connected in Series with
 - □ 4/2 Parallel Ion Exchangers (IX)

Outage Radiation Field at CANDU Unit

Main Contributors:

Co-60 (40-80%), Zr/Nb-95 (10-40%), Sb-124 (2-20%) and F.P. (1-10%)

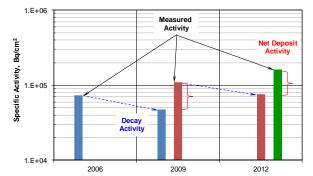
Soluble & Insoluble Contaminants

$$RF(r,t) = \sum_{i} \{f_i(r) \times w_i(t) \times A_i(r,t)\}$$

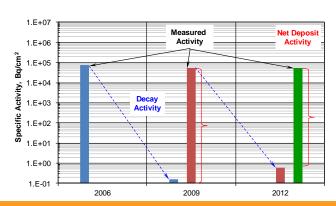
RF - outage radiation field;

r - distance from the gamma source;

t – time of a particular outage;


i - radionuclide index;

 f_i - activity to dose conversion factor;


 w_i - impact factor for i - radionuclide;

 A_i - activity of radionuclide;

Long-lived Radionuclide

Short-lived Radionuclide

Year

Impact of the System on Radiation Field

Radiation Field

Design Data: S, cm²

OATM Data

Surface Activity:

As, Bq/cm²

Factor per Year:

k

Net Activity per Year: $A = S \times As \times k$, Bq

Net Deposited Activity

Purification System

Design Data: V, cm³

Spent IX Resin

Scan

Volume Activity:

Av, Bq/cm³

Total Activity per

Year:

 $A_{IX} = Av x V, Bq$

Activity Removed by IX Resin

Design Data: S, cm²

Spent FR Filter

Scan

Surface Activity:

Av, Bq/cm²

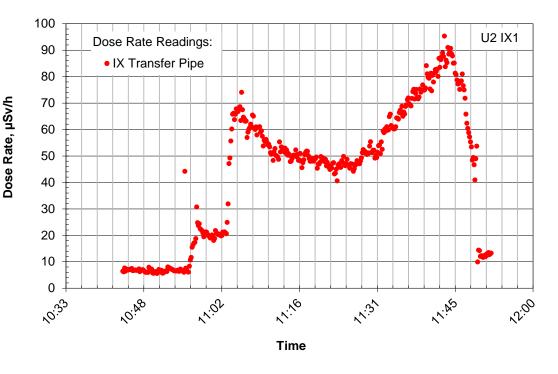
Total Activity per

Year:

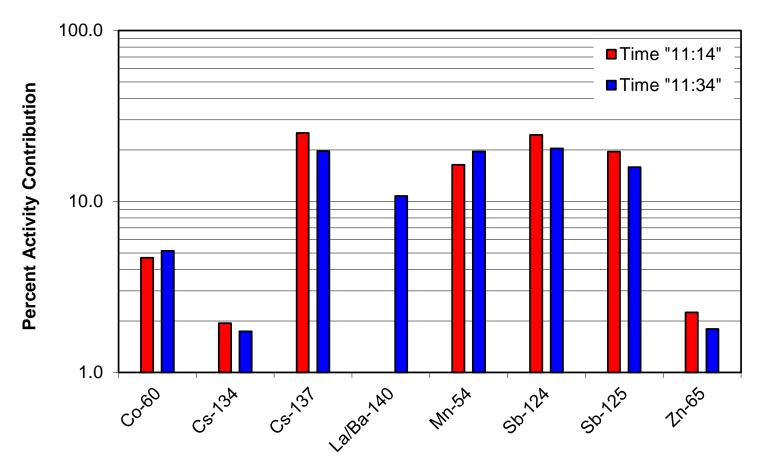
 $A_{FR} = A_S \times S$, Bq

Activity Removed by Filter

In-Situ Spectrometry of Spent IX Resin



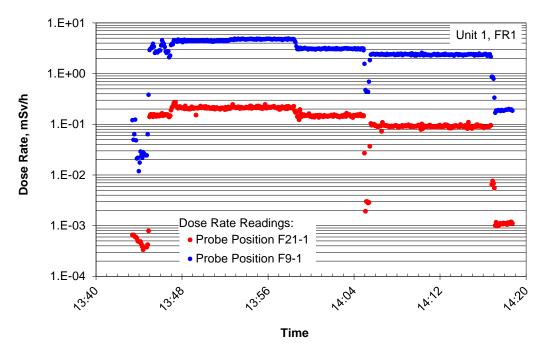
Survey during Spent Resin Slurry from the System to the Waste Tank



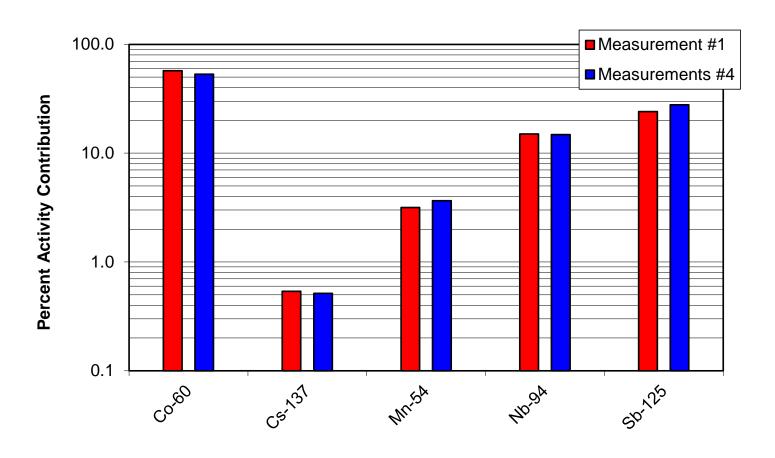
I/S Duration – 21 months, V_{IX} =1000 L

Radionuclides in Spent IX Resin

Radionuclide


Surveys were completed 27 days after O/S

In-Situ Spectrometry of Spent Filter


Survey during Spent Filter Handling in the Transfer Room

Radionuclides in Spent Mechanical Filter

Radionuclide

Surveys were completed 2 years after O/S

Conclusions

- Convenient Approach for Performance Analysis of Purification System
- Database of the Radionuclide Distributions and Inventory for IX & FR will allow:
 - □ Analyze the Effect of Mechanical Filter Parameters (pore size, media) based on the Actual Station Data
 - Directly Correlate the Activity Data to the Unit Service Conditions
 - Compare the Performance of Various IX Resin Types
 - Analyze the Radionuclide Distributions between IX Resinand Filter Media
- Waste Characterization