

Source Term Review of Industry Monitoring and Reduction Practices

Dr. Carola GregorichSenior Technical Leader

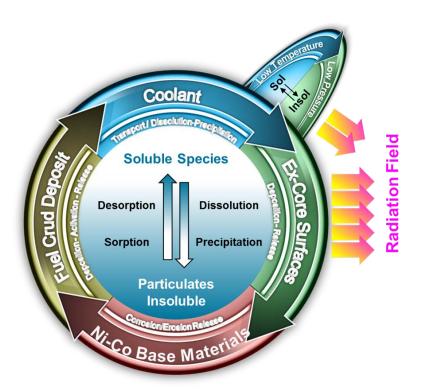
2016 North American ISOE ALARA Symposium January 12, 2016

Radiation Management & Source Term Technical Strategy Group (RMST TSG)

Global experience base of 20 utilities with 74 sites and 166 units (~40% of global fleet) for:

- Benchmarking
 - Quick surveys to emergent issues
 - Deeper looks at topics of general interest
- Independent objective technical assessments (3002005484)
- Answering tactical research questions
 - PWR shutdown releases (3002005483)
 - BWR ultrasonic fuel cleaning as radiation field reduction strategy (3002005482)
 - Radiation Field modeling OSCAR
 - Radiation Monitoring Technology Implementation Guidance (3002005480)
- Exchange
 - Annual Workshops (with associated learning opportunities)
 Shielding & Scaffolding June Remote Monitoring August Radiation Field & Source Term Reduction September

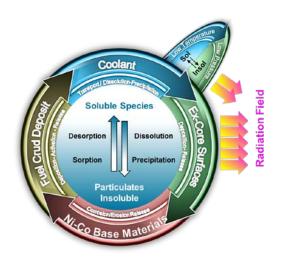
Global Industry Peer Group

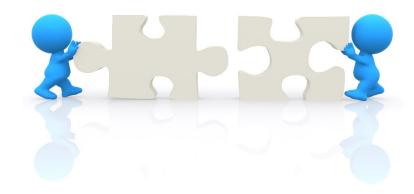

RMST TSG – 2016 Membership

Utility - Membership period		2014-2016	2015-2017	2016-2018
Dominion Resources Inc. 3 (6)	Dominion			TBF
AXPO – 2(3)	NOK	Х		
Comision Federal de Electricidad 1 (2)	CFE	Х		
Detroit Edison 1 (1)	DTE Energy	Х		
Electricite de France 19 (58)	EDF	Х		
FirstEnergy Service Company 3 (4)	FENOC	X		
Korean Hydro Nuclear Power 6 (23)	KHNP	X		
Luminant 1 (2)	Luminant	X		
NA-SA 1 (3)	NA-SA	X		
Nebraska Public Power District 1 (1)	NPPD	X		
Public Service Electric and Gas 2 (3)	PSE&G	X		
Southern Company 3 (6)		X		
Tennessee Valley Authority 3 (6)	TVA	X		
Xcel 1 (3)		X		
Arizona Public Service (Palo Verde) – 1 (3)	APS		X	
Energy Northwest* 1 (1)			X	
Entergy Services, Inc. 8 (10)	Entergy		X	
Duke Energy 4 (11)	Duke			X
Exelon Corporation 13 (22)	Exelon			Х
Omaha Public Power District 1 (1)	OPPD			X

Not seeing your utility – Consider joining – Speak to your NMETT

Source Term - Owners and Reduction Drivers




- Who selects replacement materials?
- Who decides on core and fuel design?
- Who decides on the water chemistry regime?
- Who operates the coolant cleanup?

-

Source Term - Owners and Reduction Drivers

Source Term is controlled and affected by all departments

Source Term reduction is most effectively achieved, when all department have the same objective:

Producing power, cost efficient, while source term conscious

Review of Industry Source Term Reduction

Objective:

- Identify best practices & lessons learned
- Identify knowledge gaps and technology needs

General Observation:

Do not expect Quick Fixes – Source Term Reduction manifests successes after several cycles

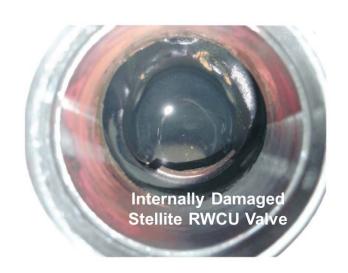
Basis:

- Past EPRI Source Term Assessments
 More than 20 assessments performed globally
 - ~ 2/3 BWR
 - ~ 1/3 PWR
 - several repeat assessments
 - a couple non-U.S.

TSG report 3002005484 - October 2015

Source Term Reduction in Pressurized Water Reactors

- Beneficial source term strategies identified are:
 - Fuel cleaning
 - Zinc chemistry
 - Elevated lithium control programs
 - Crud mitigation
 - End-of-cycle chemistry control strategies
- Gaps future research
 - Develop better understanding and guidance on
 - Optimum time to terminate zinc feed prior to EOC considering Zn ions impact on ex-core surface deposition
 - Changing lithium/pH_T during the latter portion of a cycle (within Guideline limits) to stabilize fuel deposits (and minimize deposition on ex-core surfaces)


Source Term Reduction in Boiling Water Reactors

- Common issues found
 - Materials (StelliteTM replacements and material specification/verification)
 - RWCU and RHR materials carbon steel surfaces generally cause higher radiation fields than stainless steel surfaces
 - Cleanup system performance and availability

- Factors contributing to source term mobility include
 - Fuel failures
 - Change in core design
 - Condenser inleakage
 - Transients affecting hydrogen-oxygen balance in coolant
 - Sequencing of platinum injection
 - Noble metal application close to outage

Source Term Reduction in Boiling Water Reactors

- Beneficial Source Term reduction strategies
 - Reduction of cobalt-containing materials such as StelliteTM (OEM blades, valves...)
 - Excellency in cleanup system performance and availability
 - Optimum chemistry program (HWC, Pt, Zn)
 - Minimize FW iron ingress
 - BWRVIP-225 recommended shutdown practices
- Beneficial outage operational practices
 - Flood up through the condensate treatment system
 - Using submersible filters and demineralizers to supplement cavity cleanup
 - Applying fresh precoats to RWCU F/Ds and fuel pool cooling system
 F/Ds shortly prior to outage start
 - Maintaining RWCU in service until after cavity floodup is complete, fuel gates are open, and water clarity has been established

Source Term Reduction in Boiling Water Reactors

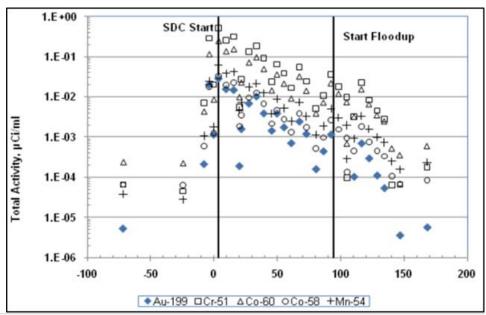
Gaps – future research

- Chemistry
 - Behavior of chromium and Cr-51 under OLNC, low hydrogen and low iron conditions
 - Impact of OLNC, low iron, and high zinc chemistry on radiation fields
 - Chemical decontamination sequencing of noble metal application
 - Behavior of reported Zn-65 and Zn-69m relative to elemental zinc levels needs better understanding

Materials

- Impact of removal of admiralty brass condensers on copper source ECP effect and reduction of natural zinc caused radiation field
- Impact of in-vessel cobalt sources on cobalt mass balance
- Cr-51 particulate releases
- Transition to Inconel[®] grids will this cause an increased contribution from Co-58

Operations


- Impact of shutdown practices on hotspots and associated CRE
- Cleanup of forward pumped drains

Fuels

- Influence of core and/or fuel design on source term and its mobility
- Control rod sequencing impact of activity transport

- RP

- Chemical decontamination benefit relative to asset protect and recontamination rates
- Remote monitoring as part of ALARA program

Review of Industry Source Term Reduction

Do's

- Component replacement:
 - Eliminate high cobalt content materials (StelliteTM etc.)
 - Enforce material specifications in regards to cobalt content
 - Enhance surface finishes
- Optimize reactor coolant cleanup efficiency and performance
- Limit core crud buildup and carry-over
- Optimize chemistry program
- Use any additional coolant cleanup system during outage

Don't's

- Replace non-StelliteTM with StelliteTM
- Ignore degrading cleanup system performance
- Ignore chemistry and radiation field monitoring
- Expect quick fixes

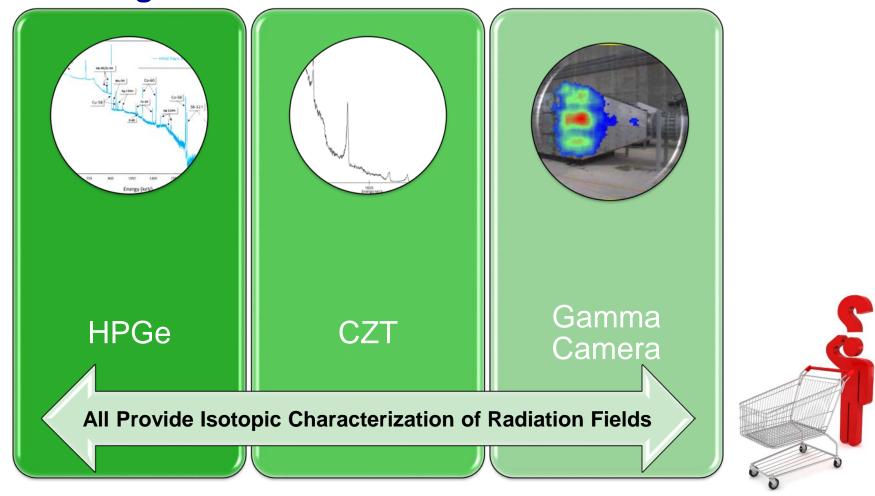
A Decade's Collection of Source Term Reduction Knowledge

Review of Industry Source Term Isotopic Monitoring

Objective:

- Identify best practices & lessons learned
- Provide guidance on monitoring tool selection

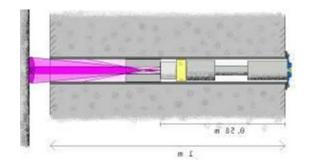
Identify knowledge gaps and technology needs

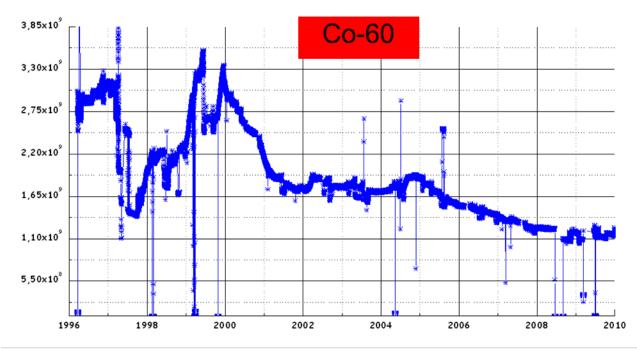

Basis:

- Current technological development
- Past EPRI technical work
- Global monitoring practices

Radiation Safety report 3002005481 - October 2015

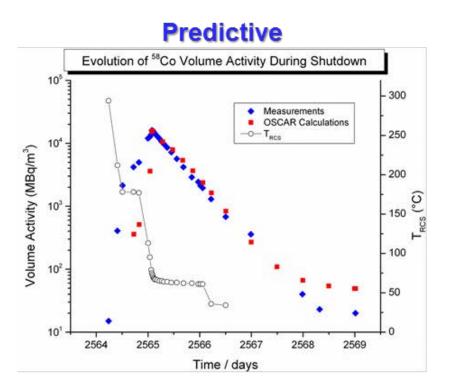
Today's Equipment Choices for Isotopic Source Term Monitoring


Monitoring Purpose Driven Flowchart Guides Selection

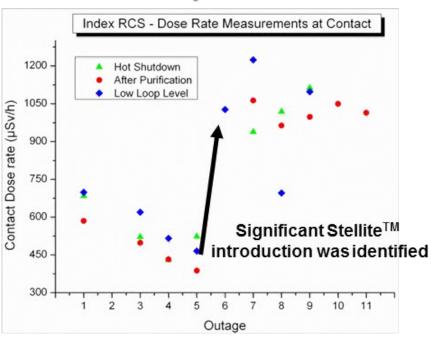


Top Notch Practice - OLA Online HPGe Monitoring at Ringhals

Co-60 trend is chosen as example, all identified nuclides in gamma spectrum are tracked and trended



Future EPRI RMST TSG Plans



OSCAR – a PWR Radiation Field Modeling Tool

- RMST TSG currently working to bring to EPRI members
- Focus on research, sensitivity, and validation studies
- EPRI and Southern are working on validating OSCARs capabilities

Mathieu Corbineau, OSCAR – Modeling Tool for Source Term Management and Dose Reduction: AREVA Use, 2015 EPRI Source Term and Radiation Field Reduction Workshop, 15 July 2015, Charlotte, NC.

EPRI RMST TSG Meetings in 2016

& knowledge transfer opportunities

- Dose Reduction for Scaffolding, Insulation, and Shielding Workshop
 - June 14-16, 2016 in Charlotte, NC at EPRI Offices
- Radiation Monitoring Technology Workshop
 - August 2016 details TBD
- Radiation Field and Source Term Reduction Workshop
 - Sept. 12 14, 2016 in Charlotte, NC at EPRI Offices
 - Monday afternoon Utility only Source Term 101
 - Tue/Wed open workshop
 - In conjunction with PWR Chemistry TSG Wed pm joint session
- In-plant gamma measurement technical foundations training
 - Sept 15, 2016 at EPRI Charlotte offices
 - open to EPRI members please email interest to <u>cgregorich@epri.com</u>

For more information, email cgregorich@epri.com

EPRI Projects of Source Term Interest

Base, RMST and PWR Chemistry TSG projects

- Collection of monitoring data chemistry and radiation field
- Surface passivation
- Micro-Climate
- Silver and Antimony influence on radiation field generation
- Hydrophobic Coatings
- Activity transport modeling review
- Source Term Reduction Sourcebook Cobalt and beyond
- PWR shutdown release
- RCP operational practices

Visit RadSafety Cockpit on www.epri.com for more information

Together...Shaping the Future of Electricity