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Who am |

| am a professor of computer science and engineering
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| am a data scientist
e | find ways to use data to inform and improve tasks

e | use copious amounts of data

| specialize in
Large Scale Information Network Analysis



What am | doing here?

It’s -30 degrees in South Bend, IN

Convince you that data science may be able to help



First some background in data and info. science

Computer
Science

Machine
Learning

Data
Science

Information
Technology

Marketing



Databases came first

Relational databases

Customer ID Tax ID Name Address [More fields]
1111111 441-1122 Smith, John Jr. 501 Sunnyvale

2222222 551-2211 Hite, Robert 401 W. 15t St

Tax ID Year Total kWh

441-1122 2011 13050

441-1122 2012 14010




Databases came first

Transactional databases

Customer ID Acct No Name Address [More fields]
1111111 626-11-2402 Smith, John Jr. 501 Sunnyvale

2222222 727-44-9080 Hite, Robert 401 W. 15t St

Acct No TransactionID Time Amount

626-11-2402 00001 063012252012 +1000.00

626-11-2402 00002 063112252012 -5.00

626-11-2402 00003 1410 12262012 -15.00

Enabled easy accounting
e Lots of accountants were laid off
e Lots of IT guys were hired



We started to analyze the data

Find patterns, trends in the data

Data Cube
Slice, Dice, Rollup, Drilldown on data

Association Rule Mining
Find dependencies between transactions

Clustering
Group similar items together

Classification
Determine which labeled class an item belongs to

Together this is generally referred to as Data Mining
Originally called Knowledge Discovery in Databases



Association Rule Mining

Find patterns, trends in the data

Some examples:
Supermarket —
{Onions, Ketchup, Buns} -> {Hamburger}
{Diapers} ->

Something to think about:
Why are bread and milk in the back of the store?
Robbers?



Association Rule Mining (Example)

Residential Power Disaggregation
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Association Rule Mining

Transaction database (ON)

fam ps3 fam stereo
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Association Rule Mining

Transaction database (OFF)
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Association Rule Mining

Correlation and usage pattern mining
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Association Rule Mining

Can we determine which appliances are running?
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Clustering

Group similar items together

Based on a similarity measure
e Time, frequency, geography, anything else, combination
of anything.

e Literally countless similarity measures

The “Google Algorithm” is a similarity measure

How similar is the query terms to the Web page?

Thousands of clustering algorithms



Clusters of DNA Sequences
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Occupational Exposure Clusters

Cancer clusters
e Determined when a greater-than-expected number of
cancer cases are found in a region, occupation, etc.

How do we find cancer clusters?
e Erin Brockovich

. Hexavalent Chromium

* CDC, EPA, HHS

e They get lots and lots of cancer data points
 Analysts use clustering tools to wrangle the statistics

Epidemiology

 Integrated Information Analytics Center (IIAC)



Classification

Given a set of examples, find the class/group to which a
new item belongs

Also a thousand different classification algorithms
e No free lunch theorem

Based on features!
e Humans have to tell the program what to look for

What are features?

Customer ID Acct No Name Address [More fields]




Differential Diagnosis in Medicine

Complaint Complaint #2 Body Temp. Area Duration Diagnosis
Runny Nose Coughing 101.6 Head 3 days Cold
Aching Nausea 103.2 Body 4 days Flu
Runny Nose Coughing 101.5 Head 3 days Cold
Runny Nose Coughing 102.1 Head 6 days ?? Cold
Runny Nose Coughing 98.4 Head 6 days Allergies

Not enough training data



Spam Filtering

From Subject Text Spam
john@gmail  We need to talk Give me a call sometime and we can No
dave@yahoo Enlarge your penis Cheap viagra... Yes
=2 george@im.x I'd like to meet Give me a call sometime and we can ?7?
tim@nd.edu  ISOE talk Hi, | am planning to give a talk at t... ?7?

Features are so very important

From Have | Private Similar emailsin Subject Text Spam
emailed Account? system from
sender? same sender?
george@im.x No No Yes We Give me a call Yes
Clustering need to sometime and
talk we can...
tim@illinois  Yes Yes No ISOE Hi, | am No

talk planning to...




Data Driven Business Processes

Companies often have lots of data
e Companies rightfully guard their data as trade secrets.

But they often ask
“1 have all this data, but | don’t know what to do with it?”

CEO reads a magazine or a case study
...and begins making mistakes

Let’s talk about what data science can (and cannot) do



“My responses are limited, you must ask the right question”
Dr. Alfred Lanning - iRobot — 20t Century Fox — 2004



Case study in not doing the right thing

Google Flu Trends
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Case study in not doing the right thing

Ebola in America




Case study in not doing the right thing

Correlation != Causation

Internet Explorer vs Murder Rate
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In general...

Hiring a good Data Scientist
is like hiring an Electrician:



Good Practices

Capture as much data as you can.
Everything
Disk storage is cheap (and getting cheaper)
When in doubt, write it down

Do not just report aggregate statistics.

Averages can’t be un-averaged
Data is lost



Can we leverage all of the data from all of the Nuclear
Generating Stations to lower exposure and decease
outage time.

This is the promise of BIG Data

ISOE members can’t do this yet.



Why can’t Nuclear Stations use big data yet?

Consider CDC, Gmail spam filters, etc.
Why are they successful?

Because their data is in the same format,
in the same place.



Why can’t Nuclear Stations use big data yet?

ISOE Database is a good start... but incomplete

© IS0E 1 Data completeness
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This is difficult

CDC has federal law requiring reporting
Spam filtering is very expensive for Google.

| challenge you to report as much
data as you can



Imagine if we had all the data...

Occupational Exposure
e Can we predict the mRem exposure of a task?
e |s arepetitive task chronically over/under the estimate
exposure budget?
e Extra Credit - Can we reduce the individual and overall
mRem exposure?

Outage Management
e Can we predict the estimated duration of a task?
e Which tasks are chronically over/under the estimated
duration ?
e Extra Credit — Can we reduce the total outage duration?



Thank you
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