

ISOE EG-SAM Interim Report Chapter 7. Key Lessons Learned form Past Accidents

Report on behalf of the Sub Expert Group

Caroline SCHIEBER, Yoshihisa HAYASHIDA, Rick DOTY

Chapter Content

- Key lessons learned from:
 - TMI-2 accident (1979)
 - Contribution from R. Doty
 - Chernobyl accident (1986)
 - Contribution from C. Schieber
 - Fukushima accident (2011)
 - Contribution from Y. Hayashida
- Focus on occupational RP issues during emergency and recovery phases

TMI-2 Accident (28 March 1979) (1)

Accident consequences

45% of core melt, remaining in the reactor pressure vessel,
 which remained intact

Occupational tasks to be performed

- Starting just after the accident = "recovery phase"
- Objectives to decontaminate and defuel:
 - Maintaining the reactor in a safe state
 - Decontaminate the plant
 - Process and immobilize fission products
 - Remove and dispose reactor core

TMI-2 Accident (28 March 1979) (2)

28 March 1979

Accident

23 July 1980

1st reactor building entry

July 1984

 Reactor vessel head removed

October 1985

Defueling began

January 1990

Defueling completed

28 December 1993

 Post Defueling Monitored Storage

Major Activities from 1986 to 1989	Dose (person.Sv)
Defueling operations – reactor vessel	6.98
Defueling support (tools, repairs, water clean-up)	10.58
Reactor Building miscellaneous (robotics, crane operations, radioactive waste, etc.)	7.65
Decontamination outside the Reactor Building	4.24
Routine operations (ops, chemistry, RP) outside the Reactor Building	2.77
Ex-vessel defueling (pressurizer, etc.)	2.16
TOTAL	34.38 (≈ 8 person.Sv/year)

Total collective dose from March 1979 to December 1993 : About 66 person.Sv

TMI-2 Accident (28 March 1979) (3)

- Some key lessons learned from ORP point of view
 - Design changes/improvements:
 - Remote monitoring of area radiation levels
 - Collect and analyse of reactor coolant samples and other potentially highly radioactive samples without incurring unnecessary dose
 - Airborne effluent monitoring systems to address the need for monitoring of higher concentrations of radioactive materials
 - Training improvements:
 - Emergency plan response training
 - Conduct of drills and exercises
 - Development of 'unmanned robots'
 - Characterization of source terms and/or clean-up of areas (highly contaminated/high radiation fields areas)

Chernobyl Accident (26 April 1986) (1)

Accident consequences

- Explosion ruptured the reactor vessel 10 days of fire
- High release of nuclear fuel (9% on NPP site; 44% on 80 km zone, 44% rest of USSR; 3% outside USSR)

Workers involved

- Urgent response team : 27th April 1986 20th May 1986
 - 35,000 persons (13,000 military 22,000 civil)
- Recovery operation workers: 21st May 1986 30th November 1986
 - **89,000 persons** (49,000 military 40,000 civil)
- Total number of workers involved until 1990
 - ≈ 600,000 persons (240,000 military servicemen)

Collective dose 1986 – 1990 :

- ≈ 60,000 person.Sv
 - 73% in 1986, 22% in 1987

Chernobyl Accident (26 April 1986) (2)

FIRST ACTIONS

Fire control, Saving life, Cut-off ventilation / electricity, switching of cooling system,
 Examination of equipment, Radiation survey, and Water supply

1986

- Construction of Sarcophagus
- Construction of settlement for reactor personnel

1987

 Construction of water filtration system

1986 - 1988

- Construction of Slavutich town
- Construction of waste repositories

1986 - 1990

- Decontamination of reactor block, reactor site and roads
- Radiation monitoring and security operations

Chernobyl Accident (26 April 1986) (3)

Some key lessons learned from ORP point of view:

- Monitoring / Dosimetry
 - Need for adequate dose and dose rate measurement devices, able to cope with very high dose rates,
 - Need for instrumental dosimetry of beta exposure,
 - Necessity to create a centralised dose recording system,

Tools

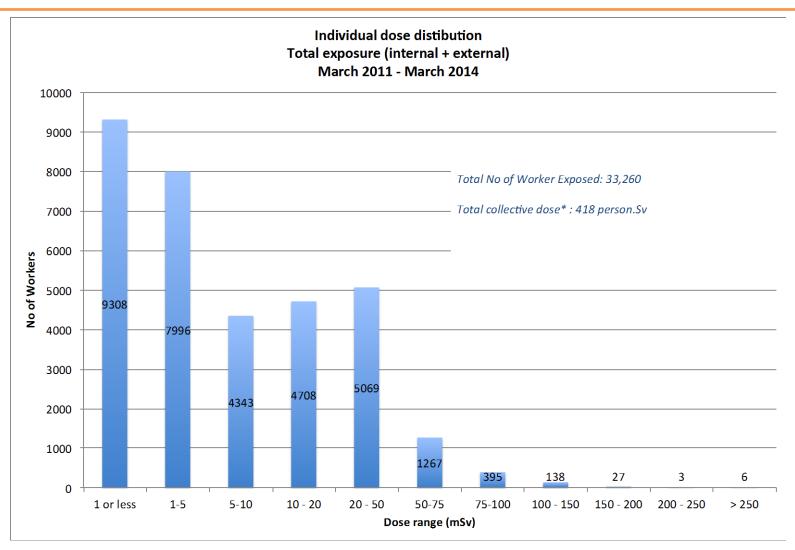
- Develop robotics supporting high dose rates
- Develop suitable and adequate personal protective equipment

Training

- Not all emergency workers may be trained on RP (firemen, militaries, etc.)
- Work management issue
 - A very large number of recovery workers might be necessary

Fukushima Accident (11 March 2011) (1)

Accident consequences


- Total loss of power supply
- Destruction of building, equipment installations, and other machineries
- Explosion and partial meltdown at plant facilities
- Large amount of radioactive release

Workers involved (on site)

- Immediately after tsunami: 400 workers (130 operators, 270 maintenance personnel)
- Emergency services: Fire-fighters, Police, Self-Defense Force
- Recovery workers: from March 2011 to March 2014: ≈ 33,000 workers
 (87% of contractors)

Fukushima Accident (11 March 2011) (1)

 $Source: TEPCO\ Monthly\ publication-* Collective\ dose\ is\ estimated\ by\ multiplying\ the\ No\ of\ workers\ reported\ to\ be\ exposed\ by\ the\ average\ individual\ dose$

Fukushima Accident (11 March 2011) (3)

Some ORP issues (for emergency phase)

- Monitoring / Dosimetry
 - Unusable APD's and dose reading devices
 - Worker Dose Registration had to be performed manually
 - Unusable WBC (shielding geometry and increase of background level)
 - High number of persons to be controlled
- Training
 - Lack of training for workers involved in the emergency operations
- Working conditions
 - Major hazards: radiation, heat, stress, machine operation and manual handling
 - Highly contaminated site by deposition of uncontrolled radioactive releases
 - Increase of radiation levels on the entire site
 - Very high number of workers needed

Key topics & Discussion points

- Major differences between the three accidents, however, from the point of view of ORP, some similarities in the issues, eg:
 - Monitoring and recording of doses
 - Tools/robotics adapted to high level of radiation conditions
 - Adapted protective equipment (radiation, contamination, heat,..)
 - Management of high number of workers
 - Training (emergency workers, new workers employed for remediation, ...)
- Collection and analysis of feed back experience is essential to improve the preparedness of accident management:
 - Need to understand much better how and when workers are exposed, as well as actions implemented to manage their protection